OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Overview

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling

OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model. This software is developed to perform analyses on a network-scale visual inspection data, while accounting for the uncertainty associated with each inspector. The main application window in OpenIPDM enables assessing the structural deterioration behaviour and the effect of interventions at different levels starting from the structural element level up to the network level. OpenIPDM also include several toolboxes that facilitate performing verification and validation analyses on visual inspection data, in addition to learning model parameters. Furthermore, OpenIPDM has the capacity to handle missing data such as, missing interventions or missing structural attributes.

For tutorials, see: YouTube channel.

How to cite

OpenIPDM: A Probabilistic Framework for Estimating the Deterioration and Effect of Interventions on Bridges
Hamida, Z., Laurent, B. and Goulet, J.-A.
SoftwareX (Submitted, January 2022)

Prerequisites

  • Matlab (version 2020b or higher) installed on Mac OSX or Windows.

  • The Matlab Statistics and Machine Learning Toolbox is required.

  • Access to GPU computing (required only for Model Training toolbox)

  • Figures for LaTeX matlab2tikz (Optional)

Installation

  1. Download and extract the ZIP file or clone the git repository in your working directory.
  2. The working directory should include the following folders:
    • Scripts
    • Tools
    • Parameters
    • Network Data
    • Figures
    • ExtractedData
    • Help
  3. Double-click OpenIPDM.mlapp file to start MATLAB App Designer, and from the top ribbon in App Designer, click Run

Getting started

After starting OpenIPDM, the main user interface will open along with a message box to load the database. Note that the message box will not show up, if pre-processed data already exist in the folder Network Data. If you do not see anything except Matlab errors verify your Matlab version, and your Matlab path.

Input

OpenIPDM takes as an input two types of file formats

  1. '.csv': this file format is generally considered for the raw database.
  2. '.mat': for files containing model paramters and/or pre-processed database.

Output

OpenIPDM generally provides the following outputs:

  1. Deterioration state estimates.
  2. Service-life of an intervention.
  3. Effect of interventions.
  4. Synthetic time series of visual inspections.

Further details about the outputs can be found in the OpenIPDM documentation manual.

Remarks

The OpenIPDM package is originally developed based on the inspection and interventions database of the Transportation Ministry of Quebec (MTQ).

Built With

Contributing

Please read CONTRIBUTING.md for details on the process for submitting pull requests.

Authors

  • Zachary Hamida - Methodology, initial code and development - webpage
  • Blanche Laurent - Analytical inference for inspectors uncertainty - webpage
  • James-A. Goulet - Methodology - webpage

License

This project is licensed under the MIT license - see the LICENSE file for details

Acknowledgments

Owner
CIVML
CIVML
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Explaining in Style: Training a GAN to explain a classifier in StyleSpace

Explaining in Style: Official TensorFlow Colab Explaining in Style: Training a GAN to explain a classifier in StyleSpace Oran Lang, Yossi Gandelsman,

Google 197 Nov 08, 2022
Keeper for Ricochet Protocol, implemented with Apache Airflow

Ricochet Keeper This repository contains Apache Airflow DAGs for executing keeper operations for Ricochet Exchange. Usage You will need to run this us

Ricochet Exchange 5 May 24, 2022
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Training and Effective Adaptation", Haoxiang Wang, Han Zhao, Bo Li.

Bridging Multi-Task Learning and Meta-Learning Code for the ICML 2021 paper "Bridging Multi-Task Learning and Meta-Learning: Towards Efficient Trainin

AI Secure 57 Dec 15, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022