DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

Overview

DIT - DTLS Interception Tool

DIT is a MitM proxy tool to intercept DTLS traffic.

It can intercept, manipulate and/or suppress DTLS datagrams between two DTLS endpoints. To achieve this, the machine DIT is running on has to be put in a MitM position with tools like arpspoof. DIT has been built with Python 3.8, utilizes scapy and python-mbedtls to process datagrams and supports a wide variety of cipher suites. It can handle PSK-based and certificate-based (RSA + ECC) authentication schemes and has been built and tested on Debian-based Linux operating systems like Ubuntu or Kali Linux.

DIT has been built to analyze traffic between IoT devices but can intercept any DTLS traffic in a local network. It has been tested and evaluated with OpenSSL and devices from the IKEA TRÅDFRI and Philips Hue series. DIT can print the decrypted datagram payload to stdout or write it into a logfile. The tool can be configured via CLI arguments or via a configuration file (./config/dit_config.yaml).

1. Installation

DIT works with raw sockets and needs to run with root privileges. You can install DIT by simply cloning the repository and installing the dependencies listed in requirements.txt with elevated privileges.

git clone https://github.com/CountablyInfinite/dit
pip3 install -r requirements.txt

2. Getting started

2.1 Verifying the installation

After cloning and installing the dependencies you can run the following command with elevated privileges to see if DIT has been installed successfully:

./dit.py -h
**************************
*   ___    ___   _____   *
*  |   \  |_ _| |_   _|  *
*  | |) |  | |    | |    *
*  |___/  |___|   |_|    *
*                        *
* DTLS INTERCEPTION TOOL *
*                        *
**************************

usage: ./dit.py [optional arguments] start

check configuration stored in ./config/dit_config.yaml before running DIT. 
edit the file or use optional command line arguments to override the default configuration. 
DIT needs root privileges and custom iptable rules to work properly.

run DIT:
  start                 run DIT with the current settings (args override config file settings)

target configuration:
  -isi , --iot_srv_ip   iot server ip address (listening service) to be intercepted (config file: 192.168.183.129)
  -isp , --iot_srv_po   iot server port to be intercepted. (config file: 1337)
  -ici , --iot_cli_ip   iot client ip address to be intercepted. (config file: 192.168.183.128)

interface configuration:
  -eif , --ex_if_name   external interface name (e.g. "eth0") to listen for incoming connections. (config file: ens33)
  -lif , --lh_if_name   local interface name (e.g. "lo") to communicate with local services. (config file: lo)

psk configuration:
  -cid , --cli_id       client identity to configure server and client handler with. (config file: Client_identity)
  -psk , --pre_sh_key   pre-shared key to configure server and client handler with. (config file: DIT_secret)
  --ciphers  [ ...]     list of ciphers to use, separated by spaces. (config file: None)

certificate configuration:
  -cer, --use_cert      [FLAG] use certificates as a method of authentication (instead of a psk). (config file: False)
  -ks , --key_size      length of the RSA/ECC key in bits. (config file: 2048)
  -ecc, --use_ecc       [FLAG] use 521 bit ECC instead of RSA to generate a key pair. disables --key_size. (config file: False)

local services configuration:
  -lci , --lh_cli_ip    local ip address to start a client handler (DTLS server) on. (config file: 127.0.0.1)
  -lcp , --lh_cli_po    local port to start a client handler (DTLS server listener) on. (config file: 1338)
  -lsi , --lh_srv_ip    local ip address to connect a server handler (DTLS client) to. (config file: 127.0.0.1)
  -lsp , --lh_srv_po    local port to connect a server handler (DTLS client) to. (config file: 1339)

miscellaneous:
  -ibl, --icmp_block    [FLAG] automatically create an iptables rule to suppress icmp 'destination unreachable' messages
  -o , --output_file    append intercepted unencrypted messages to an output file
  -v, --verbose         [FLAG] increase verbosity to DEBUG level
  -h, --help            [FLAG] show this help text and exit

examples:
./dit.py -isi 192.168.0.1 -isp 1337 -ici 192.168.0.2 --ciphers TLS-PSK-WITH-AES-128-CCM-8 TLS-PSK-WITH-CHACHA20-POLY1305-SHA256 -psk DIT_secret start
./dit.py --iot_srv_ip 192.168.0.1 --iot_cli_ip 192.168.0.2 --use_cert --key_size 3072 --ciphers TLS-RSA-WITH-AES-128-GCM-SHA256 --verbose start
./dit.py -isi 192.168.0.1 -ici 192.168.0.2 --use_cert -ecc --output_file logfile.log --verbose start

this tool has been created for the purposes of academic research. 
use responsibly and only when explicitly authorized.

2.2 Prerequisite

2.2.1 Elevated privileges

DIT uses raw sockets and therefore needs to run with elevated (root) privileges.

2.2.2 iptables rule

DIT builds four proxy layers with scapy that are communicating between the external interface and the DTLS services running on localhost. To suppress upcoming "Destination unreachable" errors - that cause DIT to halt with an error - a custom iptables rule is necessary. You can generate it with the following command:

iptables -I OUTPUT -d localhost-ip -p icmp --icmp-type destination-unreachable -j DROP

The iptable rules can be set/unset automatically by using the --icmp_block argument when starting DIT.

./dit.py --icmp_block start

2.2.3 MitM position

For DIT to work it has to be run from a MitM position. A MitM position can be achieved in many ways, one of them is by using the tool arpspoof (part of the dsniff tool suite). To gain a MitM position in a local network between the clients 192.168.0.1 and 192.168.0.2 you can use the following command:

arpspoof -i ens33 -t 192.168.0.1 -r 192.168.0.2

2.3 Configuring DIT

DIT can be configured via CLI arguments or via a configuration file (./config/dit_config.yaml). CLI arguments override settings stored in the configuration file. When calling ./dit.py -h - as depicted in section 2.1 - DIT prints out the current configuration that has been read from the configuration file.

2.3.1 ./config/dit_config.yaml

DIT comes with a default configuration you'll need to adapt before running an attack.

cat ./config/dit_config.yaml 
# configure spoofing/sniffing targets
targets:  
  iot_srv_ip: 192.168.183.129
  iot_srv_po: 1337
  iot_cli_ip: 192.168.183.128
  ciphers:
    # if no ciphers are configured, DIT will offer all ciphersuites available with mbedTLS
    #- TLS-ECDHE-ECDSA-WITH-AES-256-CBC-SHA384
    #- TLS-PSK-WITH-AES-128-CCM-8
    #- TLS-RSA-WITH-AES-128-GCM-SHA256

# configure interface names
interfaces:
  ex_if_name: ens33
  lh_if_name: lo

# configure psk options
psk:
  cli_id: Client_identity
  pre_sh_key: DIT_secret

# configure certificate options
certificate:
  # default is RSA. "use_ecc" arg enables ECC and disables key_size
  use_cert: False
  key_size: 2048
  use_ecc: False

# configure local dtls services
local_services:
  lh_cli_ip: 127.0.0.1
  lh_cli_po: 1338
  lh_srv_ip: 127.0.0.1
  lh_srv_po: 1339

targets:

  • iot_srv_ip: IP address of the dtls server
  • iot_srv_po: Port the dtls server is listening on
  • iot_cli_ip: IP address of the dtls client
  • ciphers: List of cipher suites (using the OpenSSL format) DIT will offer/support when establishing the connections. When no suites are configured DIT offers/supports all cipher suites available with mbedTLS.

interfaces:

  • ex_if_name: Name of the external interface DIT will operate on.
  • lh_if_name: Name of the internal interface DIT will operate on. Local DTLS server and client services will operate on this interface.

psk:

  • cli_id: Client identy to be used when accepting / establishing DTLS connections. (Default key is 'Client_identity')
  • pr_sh_key: PSK to be used when accepting / establishing DTLS connections. (ASCII encoded)

certificate:

  • use_cert: Boolean value. Activates the usage of RSA certificates. DIT automatically creates and uses a corresponding certificate with "key_size" Bits in length.
  • key_size: Length of the RSA key in bits.
  • use_ecc: Boolean value. Activates the usege of ECC certificates. Only works when "use_cert" is set. Deactivates "key_size".

local services:

  • lh_cli_ip: IP address of the localhost interface the dtls client is running on. (typically 127.0.0.1)
  • lh_cli_po: Port the local client instance is accepting traffic on. (needn't be changed in a typical setup)
  • lh_srv_ip: IP address of the localhost interface the dtls server is running on. (typically 127.0.0.1)
  • lh_srv_po: Port the local server instance is accepting traffic on. (needn't be changed in a typical setup)

2.3.2 Command Line Arguments

DIT can be configured via Command Line Arguments. The arguments are listed and described when calling ./dit.py -h - as shown in section 2.1. Command Line Arguments override settings stored in the configuration file and are a fast way to adapt/test settings without changing the config file.

3. Use cases / Evaluation

Refer to https://github.com/CountablyInfinite/dit/tree/master/doc

Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
codes for Self-paced Deep Regression Forests with Consideration on Ranking Fairness

Self-paced Deep Regression Forests with Consideration on Ranking Fairness This is official codes for paper Self-paced Deep Regression Forests with Con

Learning in Vision 4 Sep 11, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
An example of Scatterbrain implementation (combining local attention and Performer)

An example of Scatterbrain implementation (combining local attention and Performer)

HazyResearch 97 Jan 02, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
Multi-robot collaborative exploration and mapping through Voronoi partition and DRL in unknown environment

Voronoi Multi_Robot Collaborate Exploration Introduction In the unknown environment, the cooperative exploration of multiple robots is completed by Vo

PeaceWord 6 Nov 22, 2022
This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

This is the replication package for paper submission: Towards Training Reproducible Deep Learning Models.

0 Feb 02, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023
Pytorch implementation of CVPR2020 paper “VectorNet: Encoding HD Maps and Agent Dynamics from Vectorized Representation”

VectorNet Re-implementation This is the unofficial pytorch implementation of CVPR2020 paper "VectorNet: Encoding HD Maps and Agent Dynamics from Vecto

120 Jan 06, 2023
ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Real-Time Semantic Segmentation in TensorFlow Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Netwo

Oles Andrienko 219 Nov 21, 2022
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
Spherical CNNs

Spherical CNNs Equivariant CNNs for the sphere and SO(3) implemented in PyTorch Overview This library contains a PyTorch implementation of the rotatio

Jonas Köhler 893 Dec 28, 2022
Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021)

Monocular 3D Object Detection: An Extrinsic Parameter Free Approach (CVPR2021) Yunsong Zhou, Yuan He, Hongzi Zhu, Cheng Wang, Hongyang Li, Qinhong Jia

Yunsong Zhou 51 Dec 14, 2022
Official implementation of ETH-XGaze dataset baseline

ETH-XGaze baseline Official implementation of ETH-XGaze dataset baseline. ETH-XGaze dataset ETH-XGaze dataset is a gaze estimation dataset consisting

Xucong Zhang 134 Jan 03, 2023
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022