This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Overview

Black-Box-Defense

This repository contains the code and models necessary to replicate the results of our recent paper:

How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective
Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jinfeng Yi, Mingyi Hong, Shiyu Chang, Sijia Liu

ICLR'22 (Spotlight)
Paper: https://openreview.net/forum?id=W9G_ImpHlQd

We formulate the problem of black-box defense (as shown in Fig. 1) and investigate it through the lens of zeroth-order (ZO) optimization. Different from existing work, our paper aims to design the restriction-least black-box defense and our formulation is built upon a query-based black-box setting, which avoids the use of surrogate models.

We propose a novel black-box defense approach, ZO AutoEncoder-based Denoised Smoothing (ZO-AE-DS) as shown in Fig. 3, which is able to tackle the challenge of ZO optimization in high dimensions and convert a pre-trained non-robust ML model into a certifiably robust model using only function queries.

To train ZO-AE-DS, we adopt a two-stage training protocol. 1) White-box pre-training on AE: At the first stage, we pre-train the AE model by calling a standard FO optimizer (e.g., Adam) to minimize the reconstruction loss. The resulting AE will be used as the initialization of the second-stage training. We remark that the denoising model can also be pre-trained. However, such a pre-training could hamper optimization, i.e., making the second-stage training over θ easily trapped at a poor local optima. 2) End-to-end training: At the second stage, we keep the pre-trained decoder intact and merge it into the black-box system.

The performance comparisons with baselines are shown in Table 2.

Overview of the Repository

Our code is based on the open source codes of Salmanet al.(2020). Our repo contains the code for our experiments on MNIST, CIFAR-10, STL-10, and Restricted ImageNet.

Let us dive into the files:

  1. train_classifier.py: a generic script for training ImageNet/Cifar-10 classifiers, with Gaussian agumentation option, achieving SOTA.
  2. AE_DS_train.py: the main code of our paper which is used to train the different AE-DS/DS model with FO/ZO optimization methods used in our paper.
  3. AE_DS_certify.py: Given a pretrained smoothed classifier, returns a certified L2-radius for each data point in a given dataset using the algorithm of Cohen et al (2019).
  4. architectures.py: an entry point for specifying which model architecture to use per classifiers, denoisers and AutoEncoders.
  5. archs/ contains the network architecture files.
  6. trained_models/ contains the checkpoints of AE-DS and base classifiers.

Getting Started

  1. git clone https://github.com/damon-demon/Black-Box-Defense.git

  2. Install dependencies:

    conda create -n Black_Box_Defense python=3.6
    conda activate Black_Box_Defense
    conda install numpy matplotlib pandas seaborn scipy==1.1.0
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch # for Linux
    
  3. Train a AE-DS model using Coordinate-Wise Gradient Estimation (CGE) for ZO optimization on CIFAR-10 Dataset.

    python3 AE_DS_train.py --model_type AE_DS --lr 1e-3 --outdir ZO_AE_DS_lr-3_q192_Coord --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --epochs 200 --train_method whole --optimization_method ZO --zo_method CGE --pretrained-denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --classifier $pretrained_clf --noise_sd 0.25  --q 192
    
  4. Certify the robustness of a AE-DS model on CIFAR-10 dataset.

    python3 AE_DS_certify.py --dataset cifar10 --arch cifar_dncnn --encoder_arch cifar_encoder_192_24 --decoder_arch cifar_decoder_192_24 --base_classifier $pretrained_base_classifier --pretrained_denoiser $pretrained_denoiser  --pretrained-encoder $pretrained_encoder --pretrained-decoder $pretrained_decoder --sigma 0.25 --outfile ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25 --batch 400 --N 10000 --skip 1 --l2radius 0.25
    

Check the results in ZO_AE_DS_lr-3_q192_Coord_NoSkip_CF_result/sigma_0.25.

Citation

@inproceedings{
zhang2022how,
title={How to Robustify Black-Box {ML} Models? A Zeroth-Order Optimization Perspective},
author={Yimeng Zhang and Yuguang Yao and Jinghan Jia and Jinfeng Yi and Mingyi Hong and Shiyu Chang and Sijia Liu},
booktitle={International Conference on Learning Representations},
year={2022},
url={ https://openreview.net/forum?id=W9G_ImpHlQd }
}

Contact

For more information, contact Yimeng(Damon) Zhang with any additional questions or comments.

Owner
OPTML Group
OPtimization and Trustworthy Machine Learning Group @ Michigan State University
OPTML Group
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
This program uses trial auth token of Azure Cognitive Services to do speech synthesis for you.

🗣️ aspeak A simple text-to-speech client using azure TTS API(trial). 😆 TL;DR: This program uses trial auth token of Azure Cognitive Services to do s

Levi Zim 359 Jan 05, 2023
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
Code for the Shortformer model, from the paper by Ofir Press, Noah A. Smith and Mike Lewis.

Shortformer This repository contains the code and the final checkpoint of the Shortformer model. This file explains how to run our experiments on the

Ofir Press 138 Apr 15, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023