Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Overview

Neural Scene Graphs for Dynamic Scene (CVPR 2021)

alt text

Project Page | Paper

Julian Ost, Fahim Mannan, Nils Thuerey, Julian Knodt, Felix Heide

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object compositions and views.

Original repository forked from the Implementation of "NeRF: Neural Radiance Fields" by Mildenhall et al.: Original NeRF Implementation, original readme


Getting started

The whole script is currently optimized for the usage with Virtual KITTI 2 Dataset and KITTI

Quick Start

Train a Virtual KITTI 2 Scene

conda create -n neural_scene_graphs --file requirements.txt -c conda-forge -c menpo
conda activate neural_scene_graphs
cd neural-scene-graphs
bash download_virtual_kitti.sh
python main.py --config example_configs/config_vkitti2_Scene06.py
tensorboard --logdir=example_weights/summaries --port=6006

Render a pretrained KITTI Scene from a trained Scene Graph Models

Follow the instructions under data preparation to setup the KITTI dataset.

conda create -n neural_scene_graphs --file requirements.txt -c conda-forge -c menpo
conda activate neural_scene_graphs
cd neural-scene-graphs
bash download_weights_kitti.sh
python main.py --config example_configs/config_kitti_0006_example_render.py
tensorboard --logdir=example_weights/summaries --port=6006

Disclaimer: The codebase is optimized to run on larger GPU servers with a lot of free CPU memory. To test on local and low memory,

  1. Use chunk and netchunk in the config files to limit parallel computed rays and sampling points.

or

  1. resize and retrain with
--training_factor = 'downsampling factor'

or change to the desired factor in your config file.


Data Preperation

KITTI

  1. Get the KITTI MOT dataset, from which you need:
    1. Left color images
    2. Right color images
    3. GPS/IMU data
    4. Camera Calibration Files
    5. Training labels
  2. Extract everything to ./data/kitti and keep the data structure
  3. Neural Scene Graphs is well tested and published on real front-facing scenarios with only small movements along the camera viewing direction. We therefore prepared selected config files for KITTI Scenes (0001, 0002, 0006)

Virtual KITTI 2

bash ./download_virtual_kitti.sh

Training

To optimize models on a subsequence of Virtual KITTI 2 or KITTI, create the environment, download the data set (1.2) and optimize the (pre-trained) background and object models together:

conda create -n neural_scene_graphs --file requirements.txt -c conda-forge -c menpo
conda activate neural_scene_graphs

vkitti2 example:

python main.py --config example_configs/config_vkitti2_Scene06.txt
tensorboard --logdir=example_weights/summaries --port=6006

KITTI example:

python main.py --config example_configs/config_kitti_0006_example_train.txt
tensorboard --logdir=example_weights/summaries --port=6006

Rendering a Sequence

Render a pretrained KITTI sequence

bash download_weights_kitti.sh
python main.py --config example_configs/config_kitti_0006_example_render.txt

To render a pre-trained download the weights or use your own model.

bash download_weights_kitti.sh

To make a full render pass over all selected images (between the first and last frame) run the provided config with 'render_only=True'.

  • To render only the outputs of the static background node use 'bckg_only=True'
  • for all dynamic parts set 'obj_only=True' & 'white_bkgd=True'
python main.py --config example_configs/config_kitti_0006_example_render.txt

Citation

@InProceedings{Ost_2021_CVPR,
    author    = {Ost, Julian and Mannan, Fahim and Thuerey, Nils and Knodt, Julian and Heide, Felix},
    title     = {Neural Scene Graphs for Dynamic Scenes},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2021},
    pages     = {2856-2865}
}
Quantify the difference between two arbitrary curves in space

similaritymeasures Quantify the difference between two arbitrary curves Curves in this case are: discretized by inidviudal data points ordered from a

Charles Jekel 175 Jan 08, 2023
Unofficial PyTorch implementation of MobileViT.

MobileViT Overview This is a PyTorch implementation of MobileViT specified in "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Tr

Chin-Hsuan Wu 348 Dec 23, 2022
This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

ASL-Skeleton3D and ASL-Phono Datasets Generator The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coo

Cleison Amorim 5 Nov 20, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Causal estimators for use with WhyNot

WhyNot Estimators A collection of causal inference estimators implemented in Python and R to pair with the Python causal inference library whynot. For

ZYKLS 8 Apr 06, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
DIRL: Domain-Invariant Representation Learning

DIRL: Domain-Invariant Representation Learning Domain-Invariant Representation Learning (DIRL) is a novel algorithm that semantically aligns both the

Ajay Tanwani 30 Nov 07, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
Code for our ACL 2021 paper "One2Set: Generating Diverse Keyphrases as a Set"

One2Set This repository contains the code for our ACL 2021 paper “One2Set: Generating Diverse Keyphrases as a Set”. Our implementation is built on the

Jiacheng Ye 63 Jan 05, 2023
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

Leo 21 Nov 23, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning

Circuit Training: An open-source framework for generating chip floor plans with distributed deep reinforcement learning. Circuit Training is an open-s

Google Research 479 Dec 25, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023