FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

Related tags

Deep Learningfigaro
Overview

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann

Getting started

Prerequisites:

  • Python 3.9
  • Conda

Setup

  1. Clone this repository to your disk
  2. Install required packages (see requirements.txt). With Conda:
conda create --name figaro python=3.9
conda activate figaro
pip install -r requirements.txt

Preparing the Data

To train models and to generate new samples, we use the Lakh MIDI dataset (altough any collection of MIDI files can be used).

  1. Download (size: 1.6GB) and extract the archive file:
wget http://hog.ee.columbia.edu/craffel/lmd/lmd_full.tar.gz
tar -xzf lmd_full.tar.gz
  1. You may wish to remove the archive file now: rm lmd_full.tar.gz

Download Pre-Trained Models

If you don't wish to train your own models, you can download our pre-trained models.

  1. Download (size: 2.3GB) and extract the archive file:
wget -O checkpoints.zip https://polybox.ethz.ch/index.php/s/a0HUHzKuPPefWkW/download
unzip checkpoints.zip
  1. You may wish to remove the archive file now: rm checkpoints.zip

Training

Training arguments such as model type, batch size, model params are passed to the training scripts via environment variables.

Available model types are:

  • vq-vae: VQ-VAE model used for the learned desription
  • figaro: FIGARO with both the expert and learned description
  • figaro-expert: FIGARO with only the expert description
  • figaro-learned: FIGARO with only the learned description
  • figaro-no-inst: FIGARO (expert) without instruments
  • figaro-no-chord: FIGARO (expert) without chords
  • figaro-no-meta: FIGARO (expert) without style (meta) information
  • baseline: Unconditional decoder-only baseline following Huang et al. (2018)

Example invocation of the training script is given by the following command:

MODEL=figaro-expert python src/train.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/train.py

Generation

To generate samples, make sure you have a trained checkpoint prepared (either download one or train it yourself). For this script, make sure that the dataset is prepared according to Preparing the Data. This is needed to extract descriptions, based on which new samples can be generated.

An example invocation of the generation script is given by the following command:

MODEL=figaro-expert CHECKPOINT=./checkpoints/figaro-expert.ckpt python src/generate.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro CHECKPOINT=./checkpoints/figaro.ckpt VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/generate.py

Evaluation

We provide the evaluation scripts used to calculate the desription metrics on some set of generated samples. Refer to the previous section for how to generate samples yourself.

Example usage:

SAMPLE_DIR=./samples/figaro-expert python src/evaluate.py

Parameters

The following environment variables are available for controlling hyperparameters beyond their default value.

Training (train.py)

Model

Variable Description Default value
MODEL Model architecture to be trained
D_MODEL Hidden size of the model 512
CONTEXT_SIZE Number of tokens in the context to be passed to the auto-encoder 256
D_LATENT [VQ-VAE] Dimensionality of the latent space 1024
N_CODES [VQ-VAE] Codebook size 2048
N_GROUPS [VQ-VAE] Number of groups to split the latent vector into before discretization 16

Optimization

Variable Description Default value
EPOCHS Max. number of training epochs 16
MAX_TRAINING_STEPS Max. number of training iterations 100,000
BATCH_SIZE Number of samples in each batch 128
TARGET_BATCH_SIZE Number of samples in each backward step, gradients will be accumulated over TARGET_BATCH_SIZE//BATCH_SIZE batches 256
WARMUP_STEPS Number of learning rate warmup steps 4000
LEARNING_RATE Initial learning rate, will be decayed after constant warmup of WARMUP_STEPS steps 1e-4

Others

Variable Description Default value
CHECKPOINT Path to checkpoint from which to resume training
VAE_CHECKPOINT Path to VQ-VAE checkpoint to be used for the learned description
ROOT_DIR The folder containing MIDI files to train on ./lmd_full
OUTPUT_DIR Folder for saving checkpoints ./results
LOGGING_DIR Folder for saving logs ./logs
N_WORKERS Number of workers to be used for the dataloader available CPUs

Generation (generate.py)

Variable Description Default value
MODEL Specify which model will be loaded
CHECKPOINT Path to the checkpoint for the specified model
VAE_CHECKPOINT Path to the VQ-VAE checkpoint to be used for the learned description (if applicable)
ROOT_DIR Folder containing MIDI files to extract descriptions from ./lmd_full
OUTPUT_DIR Folder to save generated MIDI samples to ./samples
MAX_ITER Max. number of tokens that should be generated 16,000
MAX_BARS Max. number of bars that should be generated 32
MAKE_MEDLEYS Set to True if descriptions should be combined into medleys. False
N_MEDLEY_PIECES Number of pieces to be combined into one 2
N_MEDLEY_BARS Number of bars to take from each piece 16
VERBOSE Logging level, set to 0 for silent execution 2

Evaluation (evaluate.py)

Variable Description Default value
SAMPLE_DIR Folder containing generated samples which should be evaluated ./samples
OUT_FILE CSV file to which a detailed log of all metrics will be saved to ./metrics.csv
MAX_SAMPLES Limit the number of samples to be used for computing evaluation metrics 1024
Owner
Dimitri
Dimitri
GAN example for Keras. Cuz MNIST is too small and there should be something more realistic.

Keras-GAN-Animeface-Character GAN example for Keras. Cuz MNIST is too small and there should an example on something more realistic. Some results Trai

160 Sep 20, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
This repo is developed for Strong Baseline For Vehicle Re-Identification in Track 2 Ai-City-2021 Challenges

A STRONG BASELINE FOR VEHICLE RE-IDENTIFICATION This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition Workshop(CVPR

Cybercore Co. Ltd 78 Dec 29, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Video Frame Interpolation with Transformer (CVPR2022)

VFIformer Official PyTorch implementation of our CVPR2022 paper Video Frame Interpolation with Transformer Dependencies python = 3.8 pytorch = 1.8.0

DV Lab 63 Dec 16, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
An example of semantic segmentation using tensorflow in eager execution.

Semantic segmentation using Tensorflow eager execution Requirement Python 2.7+ Tensorflow-gpu OpenCv H5py Scikit-learn Numpy Imgaug Train with eager e

Iñigo Alonso Ruiz 25 Sep 29, 2022
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
[ACMMM 2021 Oral] Enhanced Invertible Encoding for Learned Image Compression

InvCompress Official Pytorch Implementation for "Enhanced Invertible Encoding for Learned Image Compression", ACMMM 2021 (Oral) Figure: Our framework

96 Nov 30, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022