FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

Related tags

Deep Learningfigaro
Overview

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann

Getting started

Prerequisites:

  • Python 3.9
  • Conda

Setup

  1. Clone this repository to your disk
  2. Install required packages (see requirements.txt). With Conda:
conda create --name figaro python=3.9
conda activate figaro
pip install -r requirements.txt

Preparing the Data

To train models and to generate new samples, we use the Lakh MIDI dataset (altough any collection of MIDI files can be used).

  1. Download (size: 1.6GB) and extract the archive file:
wget http://hog.ee.columbia.edu/craffel/lmd/lmd_full.tar.gz
tar -xzf lmd_full.tar.gz
  1. You may wish to remove the archive file now: rm lmd_full.tar.gz

Download Pre-Trained Models

If you don't wish to train your own models, you can download our pre-trained models.

  1. Download (size: 2.3GB) and extract the archive file:
wget -O checkpoints.zip https://polybox.ethz.ch/index.php/s/a0HUHzKuPPefWkW/download
unzip checkpoints.zip
  1. You may wish to remove the archive file now: rm checkpoints.zip

Training

Training arguments such as model type, batch size, model params are passed to the training scripts via environment variables.

Available model types are:

  • vq-vae: VQ-VAE model used for the learned desription
  • figaro: FIGARO with both the expert and learned description
  • figaro-expert: FIGARO with only the expert description
  • figaro-learned: FIGARO with only the learned description
  • figaro-no-inst: FIGARO (expert) without instruments
  • figaro-no-chord: FIGARO (expert) without chords
  • figaro-no-meta: FIGARO (expert) without style (meta) information
  • baseline: Unconditional decoder-only baseline following Huang et al. (2018)

Example invocation of the training script is given by the following command:

MODEL=figaro-expert python src/train.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/train.py

Generation

To generate samples, make sure you have a trained checkpoint prepared (either download one or train it yourself). For this script, make sure that the dataset is prepared according to Preparing the Data. This is needed to extract descriptions, based on which new samples can be generated.

An example invocation of the generation script is given by the following command:

MODEL=figaro-expert CHECKPOINT=./checkpoints/figaro-expert.ckpt python src/generate.py

For models using the learned description (figaro and figaro-learned), a pre-trained VQ-VAE checkpoint needs to be provided as well:

MODEL=figaro CHECKPOINT=./checkpoints/figaro.ckpt VAE_CHECKPOINT=./checkpoints/vq-vae.ckpt python src/generate.py

Evaluation

We provide the evaluation scripts used to calculate the desription metrics on some set of generated samples. Refer to the previous section for how to generate samples yourself.

Example usage:

SAMPLE_DIR=./samples/figaro-expert python src/evaluate.py

Parameters

The following environment variables are available for controlling hyperparameters beyond their default value.

Training (train.py)

Model

Variable Description Default value
MODEL Model architecture to be trained
D_MODEL Hidden size of the model 512
CONTEXT_SIZE Number of tokens in the context to be passed to the auto-encoder 256
D_LATENT [VQ-VAE] Dimensionality of the latent space 1024
N_CODES [VQ-VAE] Codebook size 2048
N_GROUPS [VQ-VAE] Number of groups to split the latent vector into before discretization 16

Optimization

Variable Description Default value
EPOCHS Max. number of training epochs 16
MAX_TRAINING_STEPS Max. number of training iterations 100,000
BATCH_SIZE Number of samples in each batch 128
TARGET_BATCH_SIZE Number of samples in each backward step, gradients will be accumulated over TARGET_BATCH_SIZE//BATCH_SIZE batches 256
WARMUP_STEPS Number of learning rate warmup steps 4000
LEARNING_RATE Initial learning rate, will be decayed after constant warmup of WARMUP_STEPS steps 1e-4

Others

Variable Description Default value
CHECKPOINT Path to checkpoint from which to resume training
VAE_CHECKPOINT Path to VQ-VAE checkpoint to be used for the learned description
ROOT_DIR The folder containing MIDI files to train on ./lmd_full
OUTPUT_DIR Folder for saving checkpoints ./results
LOGGING_DIR Folder for saving logs ./logs
N_WORKERS Number of workers to be used for the dataloader available CPUs

Generation (generate.py)

Variable Description Default value
MODEL Specify which model will be loaded
CHECKPOINT Path to the checkpoint for the specified model
VAE_CHECKPOINT Path to the VQ-VAE checkpoint to be used for the learned description (if applicable)
ROOT_DIR Folder containing MIDI files to extract descriptions from ./lmd_full
OUTPUT_DIR Folder to save generated MIDI samples to ./samples
MAX_ITER Max. number of tokens that should be generated 16,000
MAX_BARS Max. number of bars that should be generated 32
MAKE_MEDLEYS Set to True if descriptions should be combined into medleys. False
N_MEDLEY_PIECES Number of pieces to be combined into one 2
N_MEDLEY_BARS Number of bars to take from each piece 16
VERBOSE Logging level, set to 0 for silent execution 2

Evaluation (evaluate.py)

Variable Description Default value
SAMPLE_DIR Folder containing generated samples which should be evaluated ./samples
OUT_FILE CSV file to which a detailed log of all metrics will be saved to ./metrics.csv
MAX_SAMPLES Limit the number of samples to be used for computing evaluation metrics 1024
Owner
Dimitri
Dimitri
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
A modular active learning framework for Python

Modular Active Learning framework for Python3 Page contents Introduction Active learning from bird's-eye view modAL in action From zero to one in a fe

modAL 1.9k Dec 31, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge (ManiSkill Challenge), a large-scale learning-from-demonstrations benchmark for object manipulation.

ManiSkill-Learn ManiSkill-Learn is a framework for training agents on SAPIEN Open-Source Manipulation Skill Challenge, a large-scale learning-from-dem

Hao Su's Lab, UCSD 48 Dec 30, 2022
This repository contains the code for the paper "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization"

PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization News: [2020/05/04] Added EGL rendering option for training data g

Shunsuke Saito 1.5k Jan 03, 2023
An official implementation of "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation" (CVPR 2021) in PyTorch.

BANA This is the implementation of the paper "Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation". For more inf

CV Lab @ Yonsei University 59 Dec 12, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Tool cek opsi checkpoint facebook!

tool apa ini? cek_opsi_facebook adalah sebuah tool yang mengecek opsi checkpoint akun facebook yang terkena checkpoint! tujuan dibuatnya tool ini? too

Muhammad Latif Harkat 2 Jul 17, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Deploy pytorch classification model using Flask and Streamlit

Deploy pytorch classification model using Flask and Streamlit

Ben Seo 1 Nov 17, 2021
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Code for the paper "Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks"

ON-LSTM This repository contains the code used for word-level language model and unsupervised parsing experiments in Ordered Neurons: Integrating Tree

Yikang Shen 572 Nov 21, 2022