Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Related tags

Deep LearningMS-GCN
Overview

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

This code implements the skeleton-based action segmentation MS-GCN model from Automated freezing of gait assessment with marker-based motion capture and multi-stage spatial-temporal graph convolutional neural networks and Skeleton-based action segmentation with multi-stage spatial-temporal graph convolutional neural networks, arXiv 2022 (in-review).

It was originally developed for freezing of gait (FOG) assessment on a proprietary dataset. Recently, we have also achieved high skeleton-based action segmentation performance on public datasets, e.g. HuGaDB, LARa, PKU-MMD v2, TUG.

Requirements

Tested on Ubuntu 16.04 and Pytorch 1.10.1. Models were trained on a Nvidia Tesla K80.

The c3d data preparation script requires Biomechanical-Toolkit. For installation instructions, please refer to the following issue.

Content

  • data_prep/ -- Data preparation scripts.
  • main.py -- Main script. I suggest working with this interactively with an IDE. Please provide the dataset and train/predict arguments, e.g. --dataset=fog_example --action=train.
  • batch_gen.py -- Batch loader.
  • label_eval.py -- Compute metrics and save prediction results.
  • model.py -- train/predict script.
  • models/ -- Location for saving the trained models.
  • models/ms_gcn.py -- The MS-GCN model.
  • models/net_utils/ -- Scripts to partition the graph for the various datasets. For more information about the partitioning, please refer to the section Graph representations. For more information about spatial-temporal graphs, please refer to ST-GCN.
  • data/ -- Location for the processed datasets. For more information, please refer to the 'FOG' example.
  • data/signals. -- Scripts for computing the feature representations. Used for datasets that provided spatial features per joint, e.g. FOG, TUG, and PKU-MMD v2. For more information, please refer to the section Graph representations.
  • results/ -- Location for saving the results.

Data

After processing the dataset (scripts are dataset specific), each processed dataset should be placed in the data folder. We provide an example for a motion capture dataset that is in c3d format. For this particular example, we extract 9 joints in 3D:

  • data_prep/read_frame.py -- Import the joints and action labels from the c3d and save both in a separate csv.
  • data_prep/gen_data/ -- Import the csv, construct the input, and save to npy for training. For more information about the input and label shape, please refer to the section Problem statement.

Please refer to the example in data/example/ for more information on how to structure the files for training/prediction.

Pre-trained models

Pre-trained models are provided for HuGaDB, PKU-MMD, and LARa. To reproduce the results from the paper:

  • The dataset should be downloaded from their respective repository.
  • See the "Data" section for more information on how to prepare the datasets.
  • Place the pre-trained models in models/, e.g. models/hugadb.
  • Ensure that the correct graph representation is chosen in ms_gcn.
  • Comment out features = get_features(features) in model (only for lara and hugadb).
  • Specify the correct sampling rate, e.g. downsampling factor of 4 for lara.
  • Run main to generate the per-sample predictions with proper arguments, e.g. --dataset=hugadb --action=predict.
  • Run label_eval with proper arguments, e.g. --dataset=hugadb.

Acknowledgements

The MS-GCN model and code are heavily based on ST-GCN and MS-TCN. We thank the authors for publicly releasing their code.

License

MIT

Owner
Benjamin Filtjens
PhD Student working towards at-home freezing of gait detection https://orcid.org/0000-0003-2609-6883
Benjamin Filtjens
Implement of homography net by pytorch

HomographyNet Implement of homography net by pytorch Brief Introduction This project is based on the work Homography-Net: @article{detone2016deep, t

ronghao_CN 4 May 19, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Official Implementation for HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing

HyperStyle: StyleGAN Inversion with HyperNetworks for Real Image Editing Yuval Alaluf*, Omer Tov*, Ron Mokady, Rinon Gal, Amit H. Bermano *Denotes equ

885 Jan 06, 2023
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

117 Dec 28, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift

This repository contains the official code of OSTAR in "Mapping Conditional Distributions for Domain Adaptation Under Generalized Target Shift" (ICLR 2022).

Matthieu Kirchmeyer 5 Dec 06, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022
Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Hugging Face 34 Dec 10, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023