Bald-to-Hairy Translation Using CycleGAN

Overview

GANiry: Bald-to-Hairy Translation Using CycleGAN

Official PyTorch implementation of GANiry.

GANiry: Bald-to-Hairy Translation Using CycleGAN,
Fidan Samet, Oguz Bakir.
(arXiv pre-print)

Summary

This work presents our computer vision course project called bald men-to-hairy men translation using CycleGAN. On top of CycleGAN architecture, we utilize perceptual loss in order to achieve more realistic results. We also integrate conditional constrains to obtain different stylized and colored hairs on bald men. We conducted extensive experiments and present qualitative results in this work.

Getting Started

Setup

  1. Create new conda environment

    conda create --name ganiry
    
  2. Activate the environment

    conda activate ganiry 
    
  3. Install the requirements

    pip install -r requirements.txt
    
  4. Download CelebA dataset and prepare sub-dataset

    python build_copy.py --dataroot ./datasets/bald2hairy --celeba_path ./datasets/celeba/data
    

Training

Pre-trained models are also available.
Number of classes indicates the different hair classes in the dataset.

python train.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False

Test

One hot vector is the binary encoding of hair classes.

python test.py --dataroot ./datasets/bald2hairy --name bald2hairy --no_dropout --netG resnet_6blocks --load_size 143 --crop_size 128 --input_nc 4 --class_num 4 --percept_loss True --cycle_loss False --phase test --one_hot_vector 1 0 1 0

License

GANiry is released under GNU General Public License. We developed GANiry on top of CycleGAN. Please refer to License of CycleGAN for more details.

Citation

If you find GANiry useful for your research, please cite our paper as follows.

F. Samet, O. Bakir, "GANiry: Bald-to-Hairy Translation Using CycleGAN", arXiv, 2021.

BibTeX entry:

@misc{samet2021ganiry,
      title={GANiry: Bald-to-Hairy Translation Using CycleGAN}, 
      author={Fidan Samet and Oguz Bakir},
      year={2021},
      eprint={2109.13126},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Fidan Samet
@Plentific | Software Engineer @HacettepeUniversity | B.Sc CS šŸŽ“
Fidan Samet
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
DIVeR: Deterministic Integration for Volume Rendering

DIVeR: Deterministic Integration for Volume Rendering This repo contains the training and evaluation code for DIVeR. Setup python 3.8 pytorch 1.9.0 py

64 Dec 27, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stockĀ price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffic Environments for IV 2022.

TorchGRL TorchGRL is the source code for our paper Graph Convolution-Based Deep Reinforcement Learning for Multi-Agent Decision-Making in Mixed Traffi

XXQQ 42 Dec 09, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022