Hierarchical Uniform Manifold Approximation and Projection

Overview

pypi_version pypi_downloads

HUMAP exploration on Fashion MNIST dataset

HUMAP

Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HUMAP allows to:

  1. Focus on important information while reducing the visual burden when exploring whole datasets;
  2. Drill-down the hierarchy according to information demand.

The details of the algorithm can be found in our paper on ArXiv.

Installation

HUMAP was written in C++ for performance purposes, and it has an intuitive Python interface. It depends upon common machine learning libraries, such as scikit-learn and NumPy. It also needs the pybind11 due to the interface between C++ and Python.

Requirements:

  • Python 3.6 or greater
  • numpy
  • scipy
  • scikit-learn
  • pybind11
  • Eigen (C++)

If you have these requirements installed, use PyPI:

pip install humap

For Windows users:

The Eigen library does not have to be installed. Just add the files to C:Eigen or use the manual installation to change Eigen location.

Manual installation:

For manually installing HUMAP, download the project and proceed as follows:

python setup.py bdist_wheel
pip install dist/humap*.whl

Usage examples

HUMAP package follows the same idea of sklearn classes, in which you need to fit and transform data.

Fitting the hierarchy

import humap
from sklearn.datasets import fetch_openml


X, y = fetch_openml('mnist_784', version=1, return_X_y=True)

hUmap = humap.HUMAP()
hUmap.fit(X, y)

HUMAP embedding of top-level MNIST digits

By now, you can control six parameters related to the hierarchy construction and the embedding performed by UMAP.

  • levels: Controls the number of hierarchical levels + the first one (whole dataset). This parameter also controls how many data points are in each hierarchical level. The default is [0.2, 0.2], meaning the HUMAP will produce three levels: The first one with the whole dataset, the second one with 20% of the first level, and the third with 20% of the second level.
  • n_neighbors: This parameter controls the number of neighbors for approximating the manifold structures. Larger values produce embedding that preserves more of the global relations. In HUMAP, we recommend and set the default value to be 100.
  • min_dist: This parameter, used in UMAP dimensionality reduction, controls the allowance to cluster data points together. According to UMAP documentation, larger values allow evenly distributed embeddings, while smaller values encode the local structures better. We set this parameter as 0.15 as default.
  • knn_algorithm: Controls which knn approximation will be used, in which NNDescent is the default. Another option is ANNOY or FLANN if you have Python installations of these algorithms at the expense of slower run-time executions than NNDescent.
  • init: Controls the method for initing the low-dimensional representation. We set Spectral as default since it yields better global structure preservation. You can also use random initialization.
  • verbose: Controls the verbosity of the algorithm.

Embedding a hierarchical level

After fitting the dataset, you can generate the embedding for a hierarchical level by specifying the level.

embedding_l2 = hUmap.transform(2)
y_l2 = hUmap.labels(2)

Notice that the .labels() method only works for levels equal or greater than one.

Drilling down the hierarchy by embedding a subset of data points based on indices

Embedding data subsets throughout HUMAP hierarchy

When interested in a set of data samples, HUMAP allows for drilling down the hierarchy for those samples.

embedding, y, indices = hUmap.transform(2, indices=indices_of_interest)

This method returns the embedding coordinates, the labels (y), and the data points' indices in the current level. Notice that the current level is now level 1 since we used the hierarchy level 2 for drilling down operation.

Drilling down the hierarchy by embedding a subset of data points based on labels

You can apply the same concept as above to embed data points based on labels.

embedding, y, indices = hUmap.transform(2, indices=np.array([4, 9]), class_based=True)

C++ UMAP implementation

You can also fit a one-level HUMAP hierarchy, which essentially corresponds to a UMAP projection.

umap_reducer = humap.HUMAP(np.array([]))
umap_reducer.fit(X, y)

embedding = umap_reducer.transform(0)

Citation

Please, use the following reference to cite HUMAP in your work:

@misc{marciliojr_humap2021,
  title={HUMAP: Hierarchical Uniform Manifold Approximation and Projection},
  author={Wilson E. Marcílio-Jr and Danilo M. Eler and Fernando V. Paulovich and Rafael M. Martins},
  year={2021},
  eprint={2106.07718},
  archivePrefix={arXiv},
  primaryClass={cs.LG}
    }

License

HUMAP follows the 3-clause BSD license and it uses the open-source NNDescent implementation from EFANNA. It also uses a C++ implementation of UMAP for embedding hierarchy levels; this project would not be possible without UMAP's fantastic technique and package.

E-mail me (wilson_jr at outlook.com) if you like to contribute.


You might also like...
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Curved Projection Reformation
Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

Implementation of
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

my graduation project is about live human face augmentation by projection mapping by using CNN
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

A Pytorch implementation of
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Comments
  • [Packaging] Requesting conda-forge package

    [Packaging] Requesting conda-forge package

    Hi,

    Just putting it out there that you might want to consider putting up your package on conda-forge. Many other packages like numpy, scikit-learn, umap, are all available on conda-forge, and managing them through conda cli makes it easy to be up-to-date and not worry about dependencies like MKL, which pip doesn't handle well.

    As a bonus, I see that this package depends on Eigen, which needs to be manually configured on Windows. Conda-forge already has eigen available, which might make this much less error-prone for Windows users, which I assume will be a substantial chunk.

    Just as an FYI, here is a link for conda-forge submission process.

    Thanks!

    opened by stallam-unb 6
  • RuntimeError: Some rows contain fewer than n_neighbors distances

    RuntimeError: Some rows contain fewer than n_neighbors distances

    Problems when computing hierarchy for small datasets. I tried to execute HUMAP on Iris dataset using 100, 15, and 10 n_neighbors.

    RuntimeError: Some rows contain fewer than n_neighbors distances

    opened by wilsonjr 1
  • Transform with new data?

    Transform with new data?

    Semi-related to #4 , but my case is that I want to use HUMAP on a supervised data where I have a training data with labels, and I want to be able to project new test data with the same embeddings. UMAP supports this use case, I was wondering if this would be theoretically possible with HUMAP as well? Would be nice to be able to use HUMAP to interpret classifier decisions.

    opened by stallam-unb 0
  • Semi-supervised learning?

    Semi-supervised learning?

    Thanks for writing this awesome library, only recently discovered it. Do you have plans to support semi-supervised umap? From my first try outs of your library, this is the fastest (h)umap implementation which has nndescent. I would like to use it for semi-supervised learning, too.

    enhancement 
    opened by KnutJaegersberg 6
Releases(v0.2.1)
Owner
Wilson Estécio Marcílio Júnior
PhD Candidate in Computer Science. Interested in ML and Explainability.
Wilson Estécio Marcílio Júnior
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

MoCoPnet: Exploring Local Motion and Contrast Priors for Infrared Small Target Super-Resolution Pytorch implementation of local motion and contrast pr

Xinyi Ying 28 Dec 15, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
unet-family: Ultimate version

unet-family: Ultimate version 基于之前my-unet代码,我整理出来了这一份终极版本unet-family,方便其他人阅读。 相比于之前的my-unet代码,代码分类更加规范,有条理 对于clone下来的代码不需要修改各种复杂繁琐的路径问题,直接就可以运行。 并且代码有

2 Sep 19, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Introduction This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021. Data-free Kno

NVIDIA Research Projects 50 Jan 05, 2023
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
FairyTailor: Multimodal Generative Framework for Storytelling

FairyTailor: Multimodal Generative Framework for Storytelling

Eden Bens 172 Dec 30, 2022
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023