Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Overview

Nonuniform-to-Uniform Quantization

This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation"

In this study, we propose a quantization method that can learn the non-uniform input thresholds to maintain the strong representation ability of nonuniform methods, while output uniform quantized levels to be hardware-friendly and efficient as the uniform quantization for model inference.

To train the quantized network with learnable input thresholds, we introduce a generalized straight-through estimator (G-STE) for intractable backward derivative calculation w.r.t. threshold parameters.

The formula for N2UQ is simply as follows,

Forward pass:

Backward pass:

Moreover, we proposed L1 norm based entropy preserving weight regularization for weight quantization.

Citation

If you find our code useful for your research, please consider citing:

@inproceedings{liu2022nonuniform,
  title={Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation},
  author={Liu, Zechun and Cheng, Kwang-Ting and Huang, Dong and Xing, Eric and Shen, Zhiqiang},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Run

1. Requirements:

  • python 3.6, pytorch 1.7.1, torchvision 0.8.2
  • gdown

2. Data:

  • Download ImageNet dataset

3. Pretrained Models:

  • pip install gdown # gdown will automatically download the models
  • If gdown doesn't work, you may need to manually download the pretrained models and put them in the correponding ./models/ folder.

4. Steps to run:

(1) For ResNet architectures:

  • Change directory to ./resnet/
  • Run bash run.sh architecture n_bits quantize_downsampling
  • E.g., bash run.sh resnet18 2 0 for quantize resnet18 to 2-bit without quantizing downsampling layers

(2) For MobileNet architectures:

  • Change directory to ./mobilenetv2/
  • Run bash run.sh

Models

1. ResNet

Network Methods W2/A2 W3/A3 W4/A4
ResNet-18
PACT 64.4 68.1 69.2
DoReFa-Net 64.7 67.5 68.1
LSQ 67.6 70.2 71.1
N2UQ 69.4 Model-Res18-2bit 71.9 Model-Res18-3bit 72.9 Model-Res18-4bit
N2UQ * 69.7 Model-Res18-2bit 72.1 Model-Res18-3bit 73.1 Model-Res18-4bit
ResNet-34
LSQ 71.6 73.4 74.1
N2UQ 73.3 Model-Res34-2bit 75.2 Model-Res34-3bit 76.0 Model-Res34-4bit
N2UQ * 73.4 Model-Res34-2bit 75.3 Model-Res34-3bit 76.1 Model-Res34-4bit
ResNet-50
PACT 64.4 68.1 69.2
LSQ 67.6 70.2 71.1
N2UQ 75.8 Model-Res50-2bit 77.5 Model-Res50-3bit 78.0 Model-Res50-4bit
N2UQ * 76.4 Model-Res50-2bit 77.6 Model-Res50-3bit 78.0 Model-Res50-4bit

Note that N2UQ without * denotes quantizing all the convolutional layers except the first input convolutional layer.

N2UQ with * denotes quantizing all the convolutional layers except the first input convolutional layer and three downsampling layers.

W2/A2, W3/A3, W4/A4 denote the cases where the weights and activations are both quantized to 2 bits, 3 bits, and 4 bits, respectively.

2. MobileNet

Network Methods W4/A4
MobileNet-V2 N2UQ 72.1 Model-MBV2-4bit

Contact

Zechun Liu, HKUST (zliubq at connect.ust.hk)

Owner
Zechun Liu
Ph.D student in HKUST and visiting scholar in CMU
Zechun Liu
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Adversarial examples to the new ConvNeXt architecture

Adversarial examples to the new ConvNeXt architecture To get adversarial examples to the ConvNeXt architecture, run the Colab: https://github.com/stan

Stanislav Fort 19 Sep 18, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real-Time Intermediate Flow Estimation for Video Frame Interpolation YouTube | BiliBili 16X interpolation results from two input images: Introd

旷视天元 MegEngine 28 Dec 09, 2022
CTC segmentation python package

CTC segmentation CTC segmentation can be used to find utterances alignments within large audio files. This repository contains the ctc-segmentation py

Ludwig Kürzinger 217 Jan 04, 2023
Official implementation of "Accelerating Reinforcement Learning with Learned Skill Priors", Pertsch et al., CoRL 2020

Accelerating Reinforcement Learning with Learned Skill Priors [Project Website] [Paper] Karl Pertsch1, Youngwoon Lee1, Joseph Lim1 1CLVR Lab, Universi

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 134 Dec 06, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
A set of Deep Reinforcement Learning Agents implemented in Tensorflow.

Deep Reinforcement Learning Agents This repository contains a collection of reinforcement learning algorithms written in Tensorflow. The ipython noteb

Arthur Juliani 2.2k Jan 01, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022