Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

Related tags

Deep LearningDASR
Overview

DASR

Paper

Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution
Jie Liang, Hui Zeng, and Lei Zhang.
In arxiv preprint.

Abstract

Efficient and effective real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images and the limited computation resources in practical applications. Recent research on Real-ISR has achieved significant progress by modeling the image degradation space; however, these methods largely rely on heavy backbone networks and they are inflexible to handle images of different degradation levels. In this paper, we propose an efficient and effective degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image. Specifically, a tiny regression network is employed to predict the degradation parameters of the input image, while several convolutional experts with the same topology are jointly optimized to specify the network parameters via a non-linear mixture of experts. The joint optimization of multiple experts and the degradation-adaptive pipeline significantly extend the model capacity to handle degradations of various levels, while the inference remains efficient since only one adaptively specified network is used for super-resolving the input image. Our extensive experiments demonstrate that the proposed DASR is not only much more effective than existing methods on handling real-world images with different degradation levels but also efficient for easy deployment.

Overall pipeline of the DASR:

illustration

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/DASR
cd DASR
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirements.txt
  • Prepare the training and testing dataset by following this instruction.
  • Prepare the pre-trained models by following this instruction.

Training

First, check and adapt the yml file options/train/DASR/train_DASR.yml, then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python dasr/train.py -opt options/train/DASR/train_DASR.yml --auto_resume
  • Distributed Training:
YTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4335 dasr/train.py -opt options/train/DASR/train_DASR.yml --launcher pytorch --auto_resume

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Testing

First, check and adapt the yml file options/test/DASR/test_DASR.yml, then run:

PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/DASR/test_DASR.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

License

This project is released under the Apache 2.0 license.

Citation

@article{jie2022DASR,
  title={Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  journal={arXiv preprint arXiv:2203.14216},
  year={2022}
}

Acknowledgement

This project is built based on the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
A Repository of Community-Driven Natural Instructions

A Repository of Community-Driven Natural Instructions TLDR; this repository maintains a community effort to create a large collection of tasks and the

AI2 244 Jan 04, 2023
Wenet STT Python

Wenet STT Python Beta Software Simple Python library, distributed via binary wheels with few direct dependencies, for easily using WeNet models for sp

David Zurow 33 Feb 21, 2022
Repositório da disciplina de APC, no segundo semestre de 2021

NOTAS FINAIS: https://github.com/fabiommendes/apc2018/blob/master/nota-final.pdf Algoritmos e Programação de Computadores Este é o Git da disciplina A

16 Dec 16, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

1.1k Jan 03, 2023
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022