Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

Related tags

Deep LearningDASR
Overview

DASR

Paper

Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution
Jie Liang, Hui Zeng, and Lei Zhang.
In arxiv preprint.

Abstract

Efficient and effective real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images and the limited computation resources in practical applications. Recent research on Real-ISR has achieved significant progress by modeling the image degradation space; however, these methods largely rely on heavy backbone networks and they are inflexible to handle images of different degradation levels. In this paper, we propose an efficient and effective degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image. Specifically, a tiny regression network is employed to predict the degradation parameters of the input image, while several convolutional experts with the same topology are jointly optimized to specify the network parameters via a non-linear mixture of experts. The joint optimization of multiple experts and the degradation-adaptive pipeline significantly extend the model capacity to handle degradations of various levels, while the inference remains efficient since only one adaptively specified network is used for super-resolving the input image. Our extensive experiments demonstrate that the proposed DASR is not only much more effective than existing methods on handling real-world images with different degradation levels but also efficient for easy deployment.

Overall pipeline of the DASR:

illustration

For more details, please refer to our paper.

Getting started

  • Clone this repo.
git clone https://github.com/csjliang/DASR
cd DASR
  • Install dependencies. (Python 3 + NVIDIA GPU + CUDA. Recommend to use Anaconda)
pip install -r requirements.txt
  • Prepare the training and testing dataset by following this instruction.
  • Prepare the pre-trained models by following this instruction.

Training

First, check and adapt the yml file options/train/DASR/train_DASR.yml, then

  • Single GPU:
PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python dasr/train.py -opt options/train/DASR/train_DASR.yml --auto_resume
  • Distributed Training:
YTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=4335 dasr/train.py -opt options/train/DASR/train_DASR.yml --launcher pytorch --auto_resume

Training files (logs, models, training states and visualizations) will be saved in the directory ./experiments/{name}

Testing

First, check and adapt the yml file options/test/DASR/test_DASR.yml, then run:

PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/DASR/test_DASR.yml

Evaluating files (logs and visualizations) will be saved in the directory ./results/{name}

License

This project is released under the Apache 2.0 license.

Citation

@article{jie2022DASR,
  title={Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution},
  author={Liang, Jie and Zeng, Hui and Zhang, Lei},
  journal={arXiv preprint arXiv:2203.14216},
  year={2022}
}

Acknowledgement

This project is built based on the excellent BasicSR project.

Contact

Should you have any questions, please contact me via [email protected].

The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Single object tracking and segmentation.

Single/Multiple Object Tracking and Segmentation Codes and comparison of recent single/multiple object tracking and segmentation. News 💥 AutoMatch is

ZP ZHANG 385 Jan 02, 2023
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Python code to generate art with Generative Adversarial Network

GAN_Canvas_Maker Generating Art using Generative Adversarial Network (GAN) Python code to generate art with Generative Adversarial Network: https://to

Jonny Banana 10 Aug 22, 2022
Unofficial implementation of One-Shot Free-View Neural Talking Head Synthesis

face-vid2vid Usage Dataset Preparation cd datasets wget https://yt-dl.org/downloads/latest/youtube-dl -O youtube-dl chmod a+rx youtube-dl python load_

worstcoder 68 Dec 30, 2022
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
MutualGuide is a compact object detector specially designed for embedded devices

Introduction MutualGuide is a compact object detector specially designed for embedded devices. Comparing to existing detectors, this repo contains two

ZHANG Heng 103 Dec 13, 2022
RepVGG: Making VGG-style ConvNets Great Again

RepVGG: Making VGG-style ConvNets Great Again (PyTorch) This is a super simple ConvNet architecture that achieves over 80% top-1 accuracy on ImageNet

2.8k Jan 04, 2023
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022