Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Overview

Multi-Objective Loss Balancing for Physics-Informed Deep Learning

Code for ReLoBRaLo.

Abstract

Physics Informed Neural Networks (PINN) are algorithms from deeplearning leveraging physical laws by including partial differential equations (PDE)together with a respective set of boundary and initial conditions (BC / IC) aspenalty terms into their loss function. As the PDE, BC and IC loss function parts cansignificantly differ in magnitudes, due to their underlying physical units or stochasticityof initialisation, training of PINNs may suffer from severe convergence and efficiencyproblems, causing PINNs to stay beyond desirable approximation quality. In thiswork, we observe the significant role of correctly weighting the combination of multiplecompetitive loss functions for training PINNs effectively. To that end, we implementand evaluate different methods aiming at balancing the contributions of multipleterms of the PINNs loss function and their gradients. After review of three existingloss scaling approaches (Learning Rate Annealing, GradNorm as well as SoftAdapt),we propose a novel self-adaptive loss balancing of PINNs calledReLoBRaLo(RelativeLoss Balancing with Random Lookback). Finally, the performance of ReLoBRaLo iscompared and verified against these approaches by solving both forward as well asinverse problems on three benchmark PDEs for PINNs: Burgers’ equation, Kirchhoff’splate bending equation and Helmholtz’s equation. Our simulation studies show thatReLoBRaLo training is much faster and achieves higher accuracy than training PINNswith other balancing methods and hence is very effective and increases sustainabilityof PINNs algorithms. The adaptability of ReLoBRaLo illustrates robustness acrossdifferent PDE problem settings. The proposed method can also be employed tothe wider class of penalised optimisation problems, including PDE-constrained andSobolev training apart from the studied PINNs examples.

Launch Training

Example:

python train.py --verbose --layers 2 --nodes 32 --task helmholtz --update_rule relobralo --resample

The available options are the following:

  • --path, default: experiments, type: str, path where to store the results

  • --layers, default: 1, type: int, number of layers

  • --nodes, default: 32, type: int, number of nodes

  • --network, default: fc, type: str, type of network

  • --optimizer, default: adam, type: str, type of optimizer

  • --lr, default: 0.001, type: float, learning rate

  • --patience, default: 3, type: int, how many evaluations without improvement to wait before reducing learning rate

  • --factor, default: .1, type: float, multiplicative factor by which to reduce the learning rate

  • --task, default: helmholtz, type: str, type of task to fit

  • --inverse, action: store_true, solve inverse problem

  • --inverse_var, default: None, type: float, target inverse variable

  • --update_rule, default: manual, type: str, type of balancing

  • --T, default: 1., type: float, temperature parameter for softmax

  • --alpha, default: .999, type: float, rate for exponential decay

  • --rho, default: 1., type: float, rate for exponential decay

  • --aggregate_boundaries, action: store_true, aggregate all boundary terms into one before balancing

  • --epochs, default: 100000, type: int, number of epochs

  • --resample, action: store_true, resample datapoints or keep them fixed

  • --batch_size, default: 1024, type: int, number of sampled points in a batch

  • --verbose, action: store_true, print progress to terminal

Owner
Rafael Bischof
Rafael Bischof
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

scikit-learn 52.5k Jan 08, 2023
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Official PyTorch implementation of "ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows"

ArtFlow Official PyTorch implementation of the paper: ArtFlow: Unbiased Image Style Transfer via Reversible Neural Flows Jie An*, Siyu Huang*, Yibing

123 Dec 27, 2022
Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning

Human-Level Control through Deep Reinforcement Learning Tensorflow implementation of Human-Level Control through Deep Reinforcement Learning. This imp

Devsisters Corp. 2.4k Dec 26, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022