Method for facial emotion recognition compitition of Xunfei and Datawhale .

Overview

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档

  1. 队名:W03KFgNOc
  2. 排名:3
  3. 正确率: 0.75564
  4. 队员:yyMoming,xkwang,RichardoMu
  5. 比赛链接:人脸情绪识别挑战赛
  6. 文章地址:link

emotion

该项目分别训练八个模型并生成csv文件,并进行融合

构建conda环境

conda create -n emotion python==3.8.0
conda activate emotion
cd {project_path}
pip install -r requirements.txt

训练

打开train.sh,可以看到训练的命令行,依次注释和解注释随后运行train.sh。 因为是训练八个模型,分别是efficientnet_b2b, efficientnet_b3b, cbam_resnet50, resmasking,resmasking_dropout1,resnest269e,swin,hrnet_w64,所以要训练和测试,需要分别进行8次。

  1. 训练efficientnet_b2b
python main_fer2013.py --config ./config/efficientnet_b2b_config.json
  1. 训练efficientnet_b3b
python main_fer2013.py --config ./config/efficientnet_b3b_config.json
  1. 训练cbam_resnet50
python main_fer2013.py --config ./config/cbam_resnet50_config.json
  1. 训练hrnet_w64
python main_fer2013.py --config ./config/hrnet_w64_config.json
  1. 训练resmasking
python main_fer2013.py --config ./config/resmasking_config.json
  1. 训练resmasking_dropout1
python main_fer2013.py --config ./config/resmasking_dropout1_config.json
  1. 训练resnest269e
python main_fer2013.py --config ./config/resnest269e_config.json
  1. 训练swin
python main_fer2013.py --config ./config/swin_config.json

checkpoint保存在{project_path}/checkpoint目录下,可以在log文件夹下查看训练的日志。

预测

具体内容在test.sh文件中。各个模型我们存放在百度云盘 https://pan.baidu.com/s/1mM-APWoLV5P3nvrzmG--Jg 提取码 1gyh

下载后复制到user_data/model_data下面即可运行下面的命令进行预测。

  1. 预测efficientnet_b2b
python gen_results.py --config ./config/efficientnet_b2b_config.json --model_name efficientnet_b2b --checkpoint_path efficientnet_b2b_2021Jul25_17.08
  1. 预测efficientnet_b3b
python gen_results.py --config ./config/efficientnet_b3b_config.json --model_name efficientnet_b3b --checkpoint_path efficientnet_b3b_2021Jul25_20.08
  1. 测试cbam_resnet50
python gen_results.py --config ./config/cbam_resnet50_config.json --model_name cbam_resnet50 --checkpoint_path cbam_resnet50_test_2021Jul24_19.18
  1. 测试hrnet_w64
python gen_results.py --config ./config/hrnet_w64_config.json --model_name hrnet_w64 --checkpoint_path hrnet_test_2021Aug01_17.13
  1. 测试resmasking
python gen_results.py --config ./config/resmasking_config.json --model_name resmasking --checkpoint_path resmasking_test_2021Jul26_14.33
  1. 测试resmasking_dropout1
python gen_results.py --config ./config/resmasking_dropout1_config.json --model_name resmasking_dropout1 --checkpoint_path resmasking_dropout1_test_2021Aug01_17.13
  1. 测试resnest269e
python gen_results.py --config ./config/resnest269e_config.json --model_name resnest269e --checkpoint_path resnest269e_test_2021Aug02_11.39
  1. 测试swin
python gen_results.py --config ./config/swin_config.json --model_name swin_large_patch4_window7_224 --checkpoint_path swin_large_patch4_window7_224_test_2021Aug02_21.36

请注意,这里的model_name是确定的,checkpoint_path是你训练得到模型的名字,如果你自己训练了其中的一些模型,请将对应的名称修改为训练得到模型的名称。

集成

上述8个模型的预测结果统一放在user_data/tmp_data里面,下面使用集成方法对上述八个模型的结果进行整合。

python gen_ensemble.py

我们将上述八个模型的结果进行集成,最终生成的文件放在prediction_result下面的result.csv文件中。

Owner
Working in human-computer-interaction, gaze-estimation and class education analysis. CSDN:https://blog.csdn.net/weixin_42264234
Pytorch implementation of the paper "Optimization as a Model for Few-Shot Learning"

Optimization as a Model for Few-Shot Learning This repo provides a Pytorch implementation for the Optimization as a Model for Few-Shot Learning paper.

Albert Berenguel Centeno 238 Jan 04, 2023
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022