Method for facial emotion recognition compitition of Xunfei and Datawhale .

Overview

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档

  1. 队名:W03KFgNOc
  2. 排名:3
  3. 正确率: 0.75564
  4. 队员:yyMoming,xkwang,RichardoMu
  5. 比赛链接:人脸情绪识别挑战赛
  6. 文章地址:link

emotion

该项目分别训练八个模型并生成csv文件,并进行融合

构建conda环境

conda create -n emotion python==3.8.0
conda activate emotion
cd {project_path}
pip install -r requirements.txt

训练

打开train.sh,可以看到训练的命令行,依次注释和解注释随后运行train.sh。 因为是训练八个模型,分别是efficientnet_b2b, efficientnet_b3b, cbam_resnet50, resmasking,resmasking_dropout1,resnest269e,swin,hrnet_w64,所以要训练和测试,需要分别进行8次。

  1. 训练efficientnet_b2b
python main_fer2013.py --config ./config/efficientnet_b2b_config.json
  1. 训练efficientnet_b3b
python main_fer2013.py --config ./config/efficientnet_b3b_config.json
  1. 训练cbam_resnet50
python main_fer2013.py --config ./config/cbam_resnet50_config.json
  1. 训练hrnet_w64
python main_fer2013.py --config ./config/hrnet_w64_config.json
  1. 训练resmasking
python main_fer2013.py --config ./config/resmasking_config.json
  1. 训练resmasking_dropout1
python main_fer2013.py --config ./config/resmasking_dropout1_config.json
  1. 训练resnest269e
python main_fer2013.py --config ./config/resnest269e_config.json
  1. 训练swin
python main_fer2013.py --config ./config/swin_config.json

checkpoint保存在{project_path}/checkpoint目录下,可以在log文件夹下查看训练的日志。

预测

具体内容在test.sh文件中。各个模型我们存放在百度云盘 https://pan.baidu.com/s/1mM-APWoLV5P3nvrzmG--Jg 提取码 1gyh

下载后复制到user_data/model_data下面即可运行下面的命令进行预测。

  1. 预测efficientnet_b2b
python gen_results.py --config ./config/efficientnet_b2b_config.json --model_name efficientnet_b2b --checkpoint_path efficientnet_b2b_2021Jul25_17.08
  1. 预测efficientnet_b3b
python gen_results.py --config ./config/efficientnet_b3b_config.json --model_name efficientnet_b3b --checkpoint_path efficientnet_b3b_2021Jul25_20.08
  1. 测试cbam_resnet50
python gen_results.py --config ./config/cbam_resnet50_config.json --model_name cbam_resnet50 --checkpoint_path cbam_resnet50_test_2021Jul24_19.18
  1. 测试hrnet_w64
python gen_results.py --config ./config/hrnet_w64_config.json --model_name hrnet_w64 --checkpoint_path hrnet_test_2021Aug01_17.13
  1. 测试resmasking
python gen_results.py --config ./config/resmasking_config.json --model_name resmasking --checkpoint_path resmasking_test_2021Jul26_14.33
  1. 测试resmasking_dropout1
python gen_results.py --config ./config/resmasking_dropout1_config.json --model_name resmasking_dropout1 --checkpoint_path resmasking_dropout1_test_2021Aug01_17.13
  1. 测试resnest269e
python gen_results.py --config ./config/resnest269e_config.json --model_name resnest269e --checkpoint_path resnest269e_test_2021Aug02_11.39
  1. 测试swin
python gen_results.py --config ./config/swin_config.json --model_name swin_large_patch4_window7_224 --checkpoint_path swin_large_patch4_window7_224_test_2021Aug02_21.36

请注意,这里的model_name是确定的,checkpoint_path是你训练得到模型的名字,如果你自己训练了其中的一些模型,请将对应的名称修改为训练得到模型的名称。

集成

上述8个模型的预测结果统一放在user_data/tmp_data里面,下面使用集成方法对上述八个模型的结果进行整合。

python gen_ensemble.py

我们将上述八个模型的结果进行集成,最终生成的文件放在prediction_result下面的result.csv文件中。

Owner
Working in human-computer-interaction, gaze-estimation and class education analysis. CSDN:https://blog.csdn.net/weixin_42264234
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

CondenseNetV2 This repository is the official Pytorch implementation for "CondenseNet V2: Sparse Feature Reactivation for Deep Networks" paper by Le Y

Haojun Jiang 74 Dec 12, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
A Re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"

What is This This is a simple re-implementation of the paper "A Deep Learning Framework for Character Motion Synthesis and Editing"(1). Only Sections

102 Dec 14, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022