Method for facial emotion recognition compitition of Xunfei and Datawhale .

Overview

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档

  1. 队名:W03KFgNOc
  2. 排名:3
  3. 正确率: 0.75564
  4. 队员:yyMoming,xkwang,RichardoMu
  5. 比赛链接:人脸情绪识别挑战赛
  6. 文章地址:link

emotion

该项目分别训练八个模型并生成csv文件,并进行融合

构建conda环境

conda create -n emotion python==3.8.0
conda activate emotion
cd {project_path}
pip install -r requirements.txt

训练

打开train.sh,可以看到训练的命令行,依次注释和解注释随后运行train.sh。 因为是训练八个模型,分别是efficientnet_b2b, efficientnet_b3b, cbam_resnet50, resmasking,resmasking_dropout1,resnest269e,swin,hrnet_w64,所以要训练和测试,需要分别进行8次。

  1. 训练efficientnet_b2b
python main_fer2013.py --config ./config/efficientnet_b2b_config.json
  1. 训练efficientnet_b3b
python main_fer2013.py --config ./config/efficientnet_b3b_config.json
  1. 训练cbam_resnet50
python main_fer2013.py --config ./config/cbam_resnet50_config.json
  1. 训练hrnet_w64
python main_fer2013.py --config ./config/hrnet_w64_config.json
  1. 训练resmasking
python main_fer2013.py --config ./config/resmasking_config.json
  1. 训练resmasking_dropout1
python main_fer2013.py --config ./config/resmasking_dropout1_config.json
  1. 训练resnest269e
python main_fer2013.py --config ./config/resnest269e_config.json
  1. 训练swin
python main_fer2013.py --config ./config/swin_config.json

checkpoint保存在{project_path}/checkpoint目录下,可以在log文件夹下查看训练的日志。

预测

具体内容在test.sh文件中。各个模型我们存放在百度云盘 https://pan.baidu.com/s/1mM-APWoLV5P3nvrzmG--Jg 提取码 1gyh

下载后复制到user_data/model_data下面即可运行下面的命令进行预测。

  1. 预测efficientnet_b2b
python gen_results.py --config ./config/efficientnet_b2b_config.json --model_name efficientnet_b2b --checkpoint_path efficientnet_b2b_2021Jul25_17.08
  1. 预测efficientnet_b3b
python gen_results.py --config ./config/efficientnet_b3b_config.json --model_name efficientnet_b3b --checkpoint_path efficientnet_b3b_2021Jul25_20.08
  1. 测试cbam_resnet50
python gen_results.py --config ./config/cbam_resnet50_config.json --model_name cbam_resnet50 --checkpoint_path cbam_resnet50_test_2021Jul24_19.18
  1. 测试hrnet_w64
python gen_results.py --config ./config/hrnet_w64_config.json --model_name hrnet_w64 --checkpoint_path hrnet_test_2021Aug01_17.13
  1. 测试resmasking
python gen_results.py --config ./config/resmasking_config.json --model_name resmasking --checkpoint_path resmasking_test_2021Jul26_14.33
  1. 测试resmasking_dropout1
python gen_results.py --config ./config/resmasking_dropout1_config.json --model_name resmasking_dropout1 --checkpoint_path resmasking_dropout1_test_2021Aug01_17.13
  1. 测试resnest269e
python gen_results.py --config ./config/resnest269e_config.json --model_name resnest269e --checkpoint_path resnest269e_test_2021Aug02_11.39
  1. 测试swin
python gen_results.py --config ./config/swin_config.json --model_name swin_large_patch4_window7_224 --checkpoint_path swin_large_patch4_window7_224_test_2021Aug02_21.36

请注意,这里的model_name是确定的,checkpoint_path是你训练得到模型的名字,如果你自己训练了其中的一些模型,请将对应的名称修改为训练得到模型的名称。

集成

上述8个模型的预测结果统一放在user_data/tmp_data里面,下面使用集成方法对上述八个模型的结果进行整合。

python gen_ensemble.py

我们将上述八个模型的结果进行集成,最终生成的文件放在prediction_result下面的result.csv文件中。

Owner
Working in human-computer-interaction, gaze-estimation and class education analysis. CSDN:https://blog.csdn.net/weixin_42264234
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
A simple baseline for 3d human pose estimation in tensorflow. Presented at ICCV 17.

3d-pose-baseline This is the code for the paper Julieta Martinez, Rayat Hossain, Javier Romero, James J. Little. A simple yet effective baseline for 3

Julieta Martinez 1.3k Jan 03, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
Extremely easy multi instancing software for minecraft speedrunning.

Easy Multi Extremely easy multi/single instancing software for minecraft speedrunning. A couple of goals of this project: Setup multi in minutes No fi

Duncan 8 Jul 16, 2022
Official Repo of my work for SREC Nandyal Machine Learning Bootcamp

About the Bootcamp A 3-day Machine Learning Bootcamp organised by Department of Electronics and Communication Engineering, Santhiram Engineering Colle

MS 1 Nov 29, 2021
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022