The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Overview

README

The coda and data for "Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach" (ACL '21)

Introduction

We propose a hierarchical core-fringe learning framework to measure fine-grained domain relevance of terms – the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., deep learning) domain.

image-20210528201234901

Requirements

See requirements.txt

To install torch_geometric, please follow the instruction on pytorch_geometric

Reproduction

To reproduce the results in the paper (using word2vec embeddings)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo (details about data are described below)

For broad domains (e.g., CS)

python run.py --domain cs --method cfl

For narrow domains (e.g., ML)

python run.py --domain cs --method hicfl --narrow

For narrow domains (PU setting) (e.g., ML)

python run.py --domain cs --method hicfl --narrow --pu

All experiments are run on an NVIDIA Quadro RTX 5000 with 16GB of memory under the PyTorch framework. The training of CFL for the CS domain can finish in 1 minute.

Query

To handle user query (using compositional GloVe embeddings as an example)

Download data from Google Drive, unzip and put all the folders in the root directory of this repo

Download GloVe embeddings from https://nlp.stanford.edu/projects/glove/, save the file to features/glove.6B.100d.txt

Example:

python query.py --domain cs --method cfl

The first run will train a model and save the model to model/. For the follow-up queries, the trained model can be loaded for prediction.

You can use the model either in a transductive or in an inductive setting (i.e., whether to include the query terms in training).

Options

You can check out the other options available using:

python run.py --help

Data

Data can be downloaded from Google Drive:

term-candidates/: list of seed terms. Format: term frequency

features/: features of terms (term embeddings trained by word2vec). To use compositional GloVe embeddings as features, you can download GloVe embeddings from https://nlp.stanford.edu/projects/glove/. To load the features, refer to utils.py for more details.

wikipedia/: Wikipedia search results for constructing the core-anchored semantic graph / automatic annotation

  • core-categories/: categories of core terms collected from Wikipedia. Format: term catogory ... category

  • gold-subcategories/: gold-subcategories for each domain collected from Wikipedia. Format: level#Category

  • ranking-results/: Wikipedia search results. 0 means using exact match, 1 means without exact match. Format: term result_1 ... result_k.

    The results are collected by the following script:

    # https://pypi.org/project/wikipedia/
    import wikipedia
    def get_wiki_search_result(term, mode=0):
        if mode==0:
            return wikipedia.search(f"\"{term}\"")
        else:
            return wikipedia.search(term)

train-valid-test/: train/valid/test split for evaluation with core terms

manual-data/:

  • ml2000-test.csv: manually created test set for ML
  • domain-relevance-comparison-pairs.csv: manually created test set for domain relevance comparison

Term lists

Several term lists with domain relevance scores produced by CFL/HiCFL are available on term-lists/

Format:

term  domain relevance score  core/fringe

Sample results for Machine Learning:

image-20210528201345177

Citation

The details of this repo are described in the following paper. If you find this repo useful, please kindly cite it:

@inproceedings{huang2021measuring,
  title={Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach},
  author={Huang, Jie and Chang, Kevin Chen-Chuan and Xiong, Jinjun and Hwu, Wen-mei},
  booktitle={Proceedings of ACL-IJCNLP},
  year={2021}
}
Owner
Jie Huang
Jie Huang
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
A Pytorch implementation of MoveNet from Google. Include training code and pre-train model.

Movenet.Pytorch Intro MoveNet is an ultra fast and accurate model that detects 17 keypoints of a body. This is A Pytorch implementation of MoveNet fro

Mr.Fire 241 Dec 26, 2022
Official implementation of "OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Temporal Association" in PyTorch.

openpifpaf Continuously tested on Linux, MacOS and Windows: New 2021 paper: OpenPifPaf: Composite Fields for Semantic Keypoint Detection and Spatio-Te

VITA lab at EPFL 50 Dec 29, 2022
A new GCN model for Point Cloud Analyse

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for VA-GCN in pytorch. Classification (ModelNet10/40) Data Preparation D

12 Feb 02, 2022
Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order of magnitude using coresets and data selection.

COResets and Data Subset selection Reduce end to end training time from days to hours (or hours to minutes), and energy requirements/costs by an order

decile-team 244 Jan 09, 2023
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
City-seeds - A random generator of cultural characteristics intended to spark ideas and help draw threads

City Seeds This is a random generator of cultural characteristics intended to sp

Aydin O'Leary 2 Mar 12, 2022
[NeurIPS 2021] "Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems"

Delayed Propagation Transformer: A Universal Computation Engine towards Practical Control in Cyber-Physical Systems Introduction Multi-agent control i

VITA 6 May 05, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
A general-purpose encoder-decoder framework for Tensorflow

READ THE DOCUMENTATION CONTRIBUTING A general-purpose encoder-decoder framework for Tensorflow that can be used for Machine Translation, Text Summariz

Google 5.5k Jan 07, 2023
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
An image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testingAn image base contains 490 images for learning (400 cars and 90 boats), and another 21 images for testing

SVM Données Une base d’images contient 490 images pour l’apprentissage (400 voitures et 90 bateaux), et encore 21 images pour fait des tests. Prétrait

Achraf Rahouti 3 Nov 30, 2021
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles

GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles This repository contains a method to generate 3D conformer ensembles direct

127 Dec 20, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022