Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Overview

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation

Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evaluation (NeurIPS 2021 Workshop on OfflineRL).

The code is written in python 3, using Pytorch for the implementation of the deep networks and OpenAI gym for the experiment domains.

Requirements

To install the required codebase, it is recommended to create a conda or a virtual environment. Then, run the following command

pip install -r requirements.txt

Preparation

To conduct policy evaluation, we need to prepare a set of pretrained policies. You can skip this part if you already have the pretrained models in policy_models/ and the corresponding policy values in experiments/policy_info.py

Pretrained Policy

Train the policy models using REINFORCE in different domains by running:

python policy/reinfoce.py --exp_name {exp_name}

where {exp_name} can be MultiBandit, GridWorld, CartPole or CartPoleContinuous. The parameterized epsilon-greedy policies for MultiBandit and GridWorld can be obtained by running:

python policy/handmade_policy.py

Policy Value

Option 1: Run in sequence

For each policy model, the true policy value is estimated with $10^6$ Monte Carlo roll-outs by running:

python experiments/policy_value.py --policy_name {policy_name} --seed {seed} --n 10e6

This will print the average steps, true policy value and variance of returns. Make sure you copy these results into the file experiment/policy_info.py.

Option 2: Run in parallel

If you can use qsub or sbatch, you can also run jobs/jobs_value.py with different seeds in parallel and merge them by running experiments/merge_values.py to get $10^6$ Monte Carlo roll-outs. The policy values reported in this paper were obtained in this way.

Evaluation

Option 1: Run in sequence

The main running script for policy evaluation is experiments/evaluate.py. The following running command is an example of Monte Carlo estimation for Robust On-policy Acting with $\rho=1.0$ for the policy model_GridWorld_5000.pt with seeds from 0 to 199.

python experiments/evaluate.py --policy_name GridWorld_5000 --ros_epsilon 1.0 --collectors RobustOnPolicyActing --estimators MonteCarlo --eval_steps "7,14,29,59,118,237,475,951,1902,3805,7610,15221,30443,60886" --seeds "0,199"

To conduct policy evaluation with off-policy data, you need to add the following arguments to the above running command:

--combined_trajectories 100 --combined_ops_epsilon 0.10 

Option 2: Run in parallel

If you can use qsub or sbatch, you may only need to run the script jobs/jobs.py where all experiments in the paper are arranged. The log will be saved in log/ and the seed results will be saved in results/seeds. Note that we save the data collection cache in results/data and re-use it for different value estimations. To merge results of different seeds, run experiments/merge_results.py, and the merged results will be saved in results/.

Ploting

When the experiments are finished, all the figures in the paper are produced by running

python drawing/draw.py

Citing

If you use this repository in your work, please consider citing the paper

@inproceedings{zhong2021robust,
    title = {Robust On-Policy Data Collection for Data-Efficient Policy Evaluation},
    author = {Rujie Zhong, Josiah P. Hanna, Lukas Schäfer and Stefano V. Albrecht},
    booktitle = {NeurIPS Workshop on Offline Reinforcement Learning (OfflineRL)},
    year = {2021}
}
Owner
Autonomous Agents Research Group (University of Edinburgh)
Official code repositories for projects by the Autonomous Agents Research Group
Autonomous Agents Research Group (University of Edinburgh)
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Neural Turing Machines (NTM) - PyTorch Implementation

PyTorch Neural Turing Machine (NTM) PyTorch implementation of Neural Turing Machines (NTM). An NTM is a memory augumented neural network (attached to

Guy Zana 519 Dec 21, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
Import Python modules from dicts and JSON formatted documents.

Paker Paker is module for importing Python packages/modules from dictionaries and JSON formatted documents. It was inspired by httpimporter. Important

Wojciech Wentland 1 Sep 07, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
Visualizing lattice vibration information from phonon dispersion to atoms (For GPUMD)

Phonon-Vibration-Viewer (For GPUMD) Visualizing lattice vibration information from phonon dispersion for primitive atoms. In this tutorial, we will in

Liangting 6 Dec 10, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022