Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Overview

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation

Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evaluation (NeurIPS 2021 Workshop on OfflineRL).

The code is written in python 3, using Pytorch for the implementation of the deep networks and OpenAI gym for the experiment domains.

Requirements

To install the required codebase, it is recommended to create a conda or a virtual environment. Then, run the following command

pip install -r requirements.txt

Preparation

To conduct policy evaluation, we need to prepare a set of pretrained policies. You can skip this part if you already have the pretrained models in policy_models/ and the corresponding policy values in experiments/policy_info.py

Pretrained Policy

Train the policy models using REINFORCE in different domains by running:

python policy/reinfoce.py --exp_name {exp_name}

where {exp_name} can be MultiBandit, GridWorld, CartPole or CartPoleContinuous. The parameterized epsilon-greedy policies for MultiBandit and GridWorld can be obtained by running:

python policy/handmade_policy.py

Policy Value

Option 1: Run in sequence

For each policy model, the true policy value is estimated with $10^6$ Monte Carlo roll-outs by running:

python experiments/policy_value.py --policy_name {policy_name} --seed {seed} --n 10e6

This will print the average steps, true policy value and variance of returns. Make sure you copy these results into the file experiment/policy_info.py.

Option 2: Run in parallel

If you can use qsub or sbatch, you can also run jobs/jobs_value.py with different seeds in parallel and merge them by running experiments/merge_values.py to get $10^6$ Monte Carlo roll-outs. The policy values reported in this paper were obtained in this way.

Evaluation

Option 1: Run in sequence

The main running script for policy evaluation is experiments/evaluate.py. The following running command is an example of Monte Carlo estimation for Robust On-policy Acting with $\rho=1.0$ for the policy model_GridWorld_5000.pt with seeds from 0 to 199.

python experiments/evaluate.py --policy_name GridWorld_5000 --ros_epsilon 1.0 --collectors RobustOnPolicyActing --estimators MonteCarlo --eval_steps "7,14,29,59,118,237,475,951,1902,3805,7610,15221,30443,60886" --seeds "0,199"

To conduct policy evaluation with off-policy data, you need to add the following arguments to the above running command:

--combined_trajectories 100 --combined_ops_epsilon 0.10 

Option 2: Run in parallel

If you can use qsub or sbatch, you may only need to run the script jobs/jobs.py where all experiments in the paper are arranged. The log will be saved in log/ and the seed results will be saved in results/seeds. Note that we save the data collection cache in results/data and re-use it for different value estimations. To merge results of different seeds, run experiments/merge_results.py, and the merged results will be saved in results/.

Ploting

When the experiments are finished, all the figures in the paper are produced by running

python drawing/draw.py

Citing

If you use this repository in your work, please consider citing the paper

@inproceedings{zhong2021robust,
    title = {Robust On-Policy Data Collection for Data-Efficient Policy Evaluation},
    author = {Rujie Zhong, Josiah P. Hanna, Lukas Schäfer and Stefano V. Albrecht},
    booktitle = {NeurIPS Workshop on Offline Reinforcement Learning (OfflineRL)},
    year = {2021}
}
Owner
Autonomous Agents Research Group (University of Edinburgh)
Official code repositories for projects by the Autonomous Agents Research Group
Autonomous Agents Research Group (University of Edinburgh)
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

2021-CVPR-MvCLN This repo contains the code and data of the following paper accepted by CVPR 2021 Partially View-aligned Representation Learning with

XLearning Group 33 Nov 01, 2022
This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murder rates etc.

Gun-Laws-Classifier This is a classifier which basically predicts whether there is a gun law in a state or not, depending on various things like murde

Awais Saleem 1 Jan 20, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
House_prices_kaggle - Predict sales prices and practice feature engineering, RFs, and gradient boosting

House Prices - Advanced Regression Techniques Predicting House Prices with Machine Learning This project is build to enhance my knowledge about machin

Gurpreet Singh 1 Jan 01, 2022
Yolo algorithm for detection + centroid tracker to track vehicles

Vehicle Tracking using Centroid tracker Algorithm used : Yolo algorithm for detection + centroid tracker to track vehicles Backend : opencv and python

6 Dec 21, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
DropNAS: Grouped Operation Dropout for Differentiable Architecture Search

DropNAS: Grouped Operation Dropout for Differentiable Architecture Search DropNAS, a grouped operation dropout method for one-level DARTS, with better

weijunhong 4 Aug 15, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
Price-Prediction-For-a-Dream-Home - A machine learning based linear regression trained model for house price prediction.

Price-Prediction-For-a-Dream-Home ROADMAP TO THIS LINEAR REGRESSION BASED HOUSE PRICE PREDICTION PREDICTION MODEL Import all the dependencies of the p

DIKSHA DESWAL 1 Dec 29, 2021
PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon.

Hand Mesh Reconstruction Introduction This repo is the PyTorch implementation of hand mesh reconstruction described in CMR and MobRecon. Update 2021-1

Xingyu Chen 236 Dec 29, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Cognitive Learning for Vision and Robotics (CLVR) lab @ USC 49 Nov 28, 2022