PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

Overview

2021-CVPR-MvCLN

This repo contains the code and data of the following paper accepted by CVPR 2021

Partially View-aligned Representation Learning with Noise-robust Contrastive Loss

Requirements

pytorch==1.5.0

numpy>=1.18.2

scikit-learn>=0.22.2

munkres>=1.1.2

logging>=0.5.1.2

Configuration

The hyper-parameters, the training options (including the ratiao of positive to negative, aligned proportions and switch time) are defined in the args. part in run.py.

Datasets

The Scene-15 and Reuters-dim10 datasets are placed in "datasets" folder. The NoisyMNIST and Caltech101 datasets could be downloaded from Google cloud or Baidu cloud with password "rqv4".

Usage

After setting the configuration and downloading datasets from the cloud desk, one could run the following code to verify our method on NoisyMNIST-30000 dataset for clustering task.

python run.py --data 3

The expected outputs are as follows:

******** Training begin, use RobustLoss: 1.0*m, use gpu 0, batch_size = 1024, unaligned_prop = 0.5, NetSeed = 64, DivSeed = 249 ********
=======> Train epoch: 0/80
margin = 5
distance: pos. = 2.5, neg. = 2.5, true neg. = 2.5, false neg. = 2.49
loss = 3.41, epoch_time = 12.07 s
******** testing ********
CAR=0.1012, kmeans: acc=0.1791, nmi=0.0435, ari=0.021
******* neg_dist_mean >= 1.0 * margin, start using fine loss at epoch: 3 *******
=======> Train epoch: 10/80
distance: pos. = 0.76, neg. = 5.38, true neg. = 5.83, false neg. = 1.34
loss = 0.09, epoch_time = 15.17 s
******** testing ********
CAR=0.8712, kmeans: acc=0.9462, nmi=0.8705, ari=0.8862
......
=======> Train epoch: 80/80
distance: pos. = 0.25, neg. = 5.34, true neg. = 5.8, false neg. = 1.17
loss = 0.03, epoch_time = 14.18 s
******** testing ********
CAR=0.8753, kmeans: acc=0.9459, nmi=0.8744, ari=0.8859
******** End, training time = 1276.29 s ********

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{yang2021MvCLN,
   title={Partially View-aligned Representation Learning with Noise-robust Contrastive Loss},
   author={Mouxing Yang, Yunfan Li, Zhenyu Huang, Zitao Liu, Peng Hu, Xi Peng},
   booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month={June},
   year={2021}
}
Owner
XLearning Group
Xi Peng's XLearning Group
XLearning Group
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

212 Dec 25, 2022
GemNet model in PyTorch, as proposed in "GemNet: Universal Directional Graph Neural Networks for Molecules" (NeurIPS 2021)

GemNet: Universal Directional Graph Neural Networks for Molecules Reference implementation in PyTorch of the geometric message passing neural network

Data Analytics and Machine Learning Group 124 Dec 30, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Marko Jocić 922 Dec 19, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022