HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

Related tags

Deep Learningheatnet
Overview

HeatNet

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales. It also includes preprocessing tools for atmospheric reanalysis data from the Copernicus Climate Data Store.

Dependencies

HeatNet relies on the DLWP-CS project, described in Weyn et al. (2020), and inherits all of its dependencies.

HeatNet requires installation of

  • TensorFlow >= 2.0, to build neural networks and data generators.
  • netCDF4, to read and write netCDF4 datasets.
  • xarray, to seamlessly manipulate datasets and data arrays.
  • dask, to support parallel xarray computations and streaming computation on datasets that don't fit into memory.
  • h5netcdf, which provides a flexible engine for xarray I/O operations.
  • NumPy for efficient array manipulation.
  • cdsapi, to enable downloading data from the Copernicus Climate Data Store.
  • TempestRemap, for mapping functions from latitude-longitude grids to cubed-sphere grids.

Modules

  • data: Classes and methods to download, preprocess and generate reanalysis data for model training.
  • model: Model architectures, custom losses and model estimators with descriptive metadata.
  • eval: Methods to evaluate model predictions, and compare against persistence or climatology.
  • test: Unit tests for classes and methods in the package.

License

HeatNet is distributed under the GNU General Public License Version 3, which means that any software modifying or relying on the HeatNet package must be distributed under the same license. Consult the full notice to understand your rights.

Installation guide

The installation of heatnet and its dependencies has been tested with the following configuration on both Linux and Mac personal workstations:

  • Create a new Python 3.7 environment using [conda] (https://www.anaconda.com/products/individual).

  • In the terminal, activate the environment,
    conda activate .

  • Install TensorFlow v2.3,
    pip install tensorflow==2.3

  • Install xarray,
    pip install xarray

  • Install netCDF4,
    conda install netCDF4

  • Install TempestRemap,
    conda install -c conda-forge tempest-remap

  • Install h5netcdf,
    conda install -c conda-forge h5netcdf

  • Install pygrib (Optional),
    pip install pygrib

  • Install cdsapi,
    pip install cdsapi

  • Install h5py v2.10.0,
    pip install h5py==2.10.0

  • Finally, install dask,
    pip install dask

  • The DLWP package is not currently published, so the source code must be downloaded from its GitHub repository. It is recommended to download this package in the same parent directory as HeatNet,
    git clone https://github.com/jweyn/DLWP-CS.git

  • If you want to plot results using Basemap, which is a slightly fragile (and deprecated) package, the following configuration is compatible with this setup:
    conda install basemap
    pip install -U matplotlib==3.2

Disclaimers

This is not an officially supported Google Product.

Owner
Google Research
Google Research
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch deep learning projects made easy.

PyTorch Template Project PyTorch deep learning project made easy. PyTorch Template Project Requirements Features Folder Structure Usage Config file fo

Victor Huang 3.8k Jan 01, 2023
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Deep ViT Features as Dense Visual Descriptors

dino-vit-features [paper] [project page] Official implementation of the paper "Deep ViT Features as Dense Visual Descriptors". We demonstrate the effe

Shir Amir 113 Dec 24, 2022
Implementation of Neonatal Seizure Detection using EEG signals for deploying on edge devices including Raspberry Pi.

NeonatalSeizureDetection Description Link: https://arxiv.org/abs/2111.15569 Citation: @misc{nagarajan2021scalable, title={Scalable Machine Learn

Vishal Nagarajan 11 Nov 08, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes

Lepard: Learning Partial point cloud matching in Rigid and Deformable scenes [Paper] Method overview 4DMatch Benchmark 4DMatch is a benchmark for matc

103 Jan 06, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
MANO hand model porting for the GraspIt simulator

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp Porting the MANO hand model to GraspIt! simulator Yana Hasson, Gül Varol, D

Lucas Wohlhart 10 Feb 08, 2022