Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Overview

Simple Gadget Collection for Object Detection Tasks

  • Automatic image annotation
  • Conversion between different annotation formats
  • Obtain statistical information about your dataset

This is a simple collection of gadgets for regular object detection tasks. You can also modify it yourself to implement your ideas. It is very simple to use, you just need to copy the python file you need to use, and specify the relevant parameters, and execute it. Please read the following tutorial carefully before using it.

1. Automatic image annotation:

auto_annotate_mmdetect.py
This tool is to help you complete a large number of labeling tasks quickly. It is based on the object detection model trained by mmdetection.
Usuage:
Step1: you need to use mmdetection and a small amount of labeled data (about 200~300 images) to train to get a rough object detection model(e.g. Faster-RCNN: faster_rcnn_r50_fpn_1x_coco.py). If you don't know how to use mmdetection to train a object detection model, I strongly suggest you read the tutorial on mmdetection first.
Step2: use auto_annotate_mmdetect.py to mark the remaining large amount of unmarked data and generate a VOC format (xml) file. Before that, you need to modify some places to specify the name of the annotation object and the place where the annotation file is saved.

files_path = '../project/mmdetection/data/image'              # The path of the image folder to be annotated  
img_save_path = './results'                                   # The path of the annotated images to be saved  
xml_save_path = './Annotations'                               # The path of the image annotation files (xml) to be saved  
cfg = './faster_rcnn_r50_fpn_1x_coco.py'                      # Your model configure file (mmdetection)  
wgt = './epoch_12.pth'                                        # Your model weight file  
device = 'cuda:0'                                             # Use GPU  
class_dic = {'0': 'cat',
             '1': 'dog',  
             '2': 'rabbit',  
             '3': 'mouse'}                                    # Class ID --> Class name  

Step3: auto_annotate_mmdetect.py, which will automatically use the model you just trained to generate the corresponding annotation files(xml).
Step4: you can use labelImg to manually correct the automatically generated files.

2.Conversion between different annotation formats:

2.1 PASCAL VOC-->COCO:

voc2coco.py
The annotation file format generated using labelImg is usually PASCAL VOC (xml) or YOLO(txt). When using many model training suites (e.g. mmdetection), you need to convert the xml files to COCO(json).
Usuage:
Step1: copy voc2coco.py to VOC dataset folder that you are going to transfer (as shown below).

Before:
dataset_VOC
  ├─ImageSets
  │  └─Main
  │     ├─train.txt
  │     ├─val.txt
  │     └─trainval.txt
  ├─Annotations    <--xml files are put there
  ├─JPEGImages     <--images are put there
  └─voc2coco.py    <--you should put it here

Step2: excute voc2coco.py. The images will be automatically copied to the specified folder. You only need to change the name of the dataset manually.

After:
dataset_COCO   <--You only need to change the name of the dataset manually
  ├─train     <--images for training are copied there
  ├─val       <--images for valuation are copied there
  ├─train.json
  └─val.json

By the way, it will automatically count information about the kinds your dataset contains and the number of its instances.(like this ↓)

=======Statistic Details===========  
Class Name: green_net, Instances: 119  
Class Name: obj, Instances: 522  
Class Name: kite, Instances: 152  
===================================  

========Create train.json DONE========  
Foud 3 categories: dict_keys(['obj', 'kite', 'green_net']) --> your predefine categories 3: dict_keys(['green_net', 'obj', 'kite'])  
Category: id --> {'green_net': 783, 'obj': 793, 'kite': 792}  
=====================================  

========Create val.json DONE========  
Foud 3 categories: dict_keys(['obj', 'kite', 'green_net']) --> your predefine categories 3: dict_keys(['green_net', 'obj', 'kite'])  
Category: id --> {'green_net': 783, 'obj': 793, 'kite': 792}  
=====================================

========Coco Dataset Details========  
Training set size: 516  
Valuation set size: 130  

2.2 COCO-->YOLO:

coco2yolov5.py This tool is used to solve the problem of converting COCO dataset format (json) to YOLO format (txt).
Usuage:
Step1: copy coco2yolov5.py to the coco dataset folder that you are going to transfer. (As show below↓)

Before:
dataset_coco
  ├─train.json        <--annotation json file (for training)
  ├─val.json          <--annotation json file (for valuation)
  ├─train             <--images are saved here (for training)
  ├─val               <--images are saved here (for valuation)
  └─coco2yolov5.py    <--you should put it here

Step2: specify the dataset name in coco2yolov5.py.

dataset_name = 'dataset'                  # specify your dataset name
dataset_name = dataset_name + '_yolo'

Step3: excute coco2yolov5.py.

After:
dataset_yolo
├─train┬images       <--images are saved here (for training)
│       └labels      <--annotation txt file (for training)
│
└─val┬─images        <--images are saved here (for valuation)
       └─labels      <--annotation txt file (for valuation)

3. Obtain statistical information about your dataset:

3.1 Simple statistical information:

These tools provide statistical methods for different formats of annotation files. You can use the statistical tools to quickly understand the percentage of each sample and determine whether the samples are balanced with each other, providing useful information for your next training and fine-tuning.

xml_cls_stat.py and json_cls_stat.py to obtain the statistical information of the annotation file in VOC and COCO format respectively. The usage method is very simple, you need to copy xml_cls_stat.py or json_cls_stat.py to your VOC or COCO data set folder.
It should be noted that the annotation files and images in the VOC format are stored uniformly, and xml_cls_stat.py counts the information of the entire dataset. And to use json_cls_stat.py you need to specify whether to count train or val.
json = json.load(open('train.json')) # Specify train.json
Then execute it, you can get statistics of all categories and the number of instances. (As show below↓)

=======Statistic Details===========
Class Name: DC, Class ID: 2455, Instances: 865
Class Name: HC, Class ID: 2448, Instances: 383
Class Name: WJ, Class ID: 2449, Instances: 696

3.2 Find pictures that contain the specified class

xml_find_picture.py and json_find_picture.py. The usage is exactly the same and very simple, you only need to copy it to the VOC data set folder. Specify the name of the category you need to find, specified_name ='WJ'
Finally, execute it.
The program will print out the file name containing the specified class, and show how many pictures in total contain the class you specified. (As show below↓)

···
machinery561.xml
machinery394.xml
machinery394.xml
machinery225.xml
machinery084.xml
There are 881 pictures contain specified category, (CateName=WJ)

4. Modify your dataset:

NOTE: I still recommend that you should back up your data before proceeding to avoid tragedy.

4.1 Remove specified class

xml_cls_del.py
Sometimes you will need to delete some special classes, and the workload of manually deleting specified classes is very huge. When you encounter this situation, you can use this tool to delete certain classes you don't need.
Copy xml_cls_del.py to your folder, specify the class you want to delete, and finally execute it.
Don't worry, the program will automatically create a folder called ‘New_Annotation’ to store these modified annotation files, and your original annotation files will not be affected in any way.

specified_class_name = 'WJ'  # Specify the name of the class to be deleted  

Finally, the program will tell you how many instances have been deleted. (As show below↓)

There are 648 objects have been removed.

4.2 Modify the name of the specified class

xml_cls_namechange.py or json_cls_namechange.py
The tools of the VOC (xml) version and COCO (json) version are provided here, and they are used in the same way. When you need to modify the name of a certain class or merge certain classes, you can use it to achieve. Don't worry, the program will automatically create a folder called ‘New_Annotation’ to store these modified annotation files, and your original annotation files will not be affected in any way.
Like other tools, you only need to copy xml_cls_namechange.py or json_cls_namechange.py to your dataset folder, and specify your json file save path:

json_path = './train.json'	    	#json file path before modification
json_save_path = './train2.json'	#Modified json file save path 

specify the name of the class you want to modify, and then execute it.

specified_cls_name = "A" 	  	    #Class name to be modified 
new_name = "AA"	    	 	          #New class name 

5. Simple image data enhancement:

simple_data_enhancement.py Specify the folder that needs data enhancement, then select the enhancement method you need to use according to your needs, and finally execute it.
The tool provides 6 common methods: rotate, flip, brighten, darken, salt and pepper noise, and Gaussian noise. For unneeded methods, just turn their code into comments.
file_dir = r'../data/img/' # Specify the folder that needs data enhancement

6. Use models for inference (prediction):

infer_by_folder_mmdetection.py
mmdetection officially provides scripts and commands for model inference, but they need to use command line operations. More often you may want to make model inferences according to your own ideas. For example, when you deploy a model, your model needs to receive images from the network, or you need to cascade two models to use in some situations It is not very convenient to use the command line according to the official tutorial. Here is a simple inference script for you.
I have provided a simple example. You can put pictures in a folder, and then the program will traverse the pictures in the folder, get the inference result of the model and save it in another folder. It is also very easy to transform, you can transform it into anything you need according to actual production needs, such as cascading.

7. Cascade of models:

Examples of practical application of model cascade infer_paddle_2stages.py infer_mmdet_2stages.py

Owner
llt
Object detection, Time Series Forecasting
llt
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Pytorch implementation of "ARM: Any-Time Super-Resolution Method"

ARM-Net Dependencies Python 3.6 Pytorch 1.7 Results Train Data preprocessing cd data_scripts python extract_subimages_test.py python data_augmentation

Bohong Chen 55 Nov 24, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods Introduction Graph Neural Networks (GNNs) have demonstrated

37 Dec 15, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022