Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Overview

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Project | PDF | Poster
Fangyu Li, N. Dinesh Reddy, Xudong Chen and Srinivasa G. Narasimhan
Proceedings of IEEE Intelligent Vehicles Symposium (IV'21)
Best Paper Award

Following instructions below, the user will get keypoints, trajectory reconstruction and vehicular activity clustering results like

Set up

The set up process can be skipped if using docker. Please check "Docker" section.

Python

Python version 3.6.9 is used. Python packages are in requirements.txt .

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git
sudo apt-get install python3.6
sudo apt-get install python3-pip
cd Traffic4D-Release
pip3 install -r requirements.txt

C++

Traffic4D uses C++ libraries ceres and pybind for efficient optimization. pybind needs clang compiler, so Traffic4D uses clang compiler.

Install clang compiler

sudo apt-get install clang++-6.0

Install prerequisites for ceres

# CMake
sudo apt-get install cmake
# google-glog + gflags
sudo apt-get install libgoogle-glog-dev libgflags-dev
# BLAS & LAPACK
sudo apt-get install libatlas-base-dev
# Eigen3
sudo apt-get install libeigen3-dev
# SuiteSparse and CXSparse (optional)
sudo apt-get install libsuitesparse-dev

Download and install ceres

wget https://github.com/ceres-solver/ceres-solver/archive/1.12.0.zip
unzip 1.12.0.zip
cd ceres-solver-1.12.0/
mkdir build
cd build
cmake ..
make
sudo make install

Download and install pybind

git clone https://github.com/pybind/pybind11
cd pybind11
cmake .
make
sudo make install

Build Traffic4D optimization library

cd Traffic4D-Release/src/ceres
make

ceres_reconstruct.so and ceres_spline.so are generated under path Traffic4D-Release/src/ceres/.

Dataset

Download dataset and pre-generated results from here, and put it under Traffic4D-Release/.

cd Traffic4D-Release
mv Data-Traffic4D.zip ./
unzip Data-Traffic4D.zip

The directory should be like

Traffic4D-Release/
    Data-Traffic4D/
    └───fifth_morewood/
        └───fifth_morewood_init.vd
        └───top_view.png
        └───images/
                00001.jpg
                00002.jpg
                ...
                06288.jpg
    └───arterial_kennedy/
        └───arterial_kennedy_init.vd
        └───top_view.png
        └───images/
                <put AI City Challenge frames here>
        ...

The input and output paths can be modified in config/*.yml.

Explanation

1. Input videos

Sample videos in Traffic4D are provided. Note arterial_kennedy and dodge_century are from Nvidia AI City Challenge City-Scale Multi-Camera Vehicle Tracking Challenge Track. Please request the access to the dataset here. Once get the data, run

ffmpeg -i <mtmc-dir>/train/S01/c001/vdo.avi Traffic4D-Release/Data-Traffic4D/arterial_kennedy/images/%05d.jpg
ffmpeg -i <mtmc-dir>/test/S02/c007/vdo.avi Traffic4D-Release/Data-Traffic4D/dodge_century/images/%05d.jpg

to extract frames into images/.

2. Pre-Generated 2D results

Detected 2D bounding boxes, keypoints and tracking IDs are stored in *_init.vd. Check Occlusionnet implementation for detecting keypoints; V-IOU for multi-object tracking.

3. Output folder

Folder Traffic4D-Release/Result/ will be created by default.

Experiments

Run python exp/traffic4d.py config/<intersection_name>.yml <action>. Here YML configuration files for multiple intersections are provided under config/ folder. <action> shoulbe be reconstruction or clustering to perform longitudinal reconstruction and activity clustering sequentially. For example, below runs Fifth and Morewood intersection.

cd Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Results

Find these results in the output folder:

  1. 2D keypoints: If 3D reconstruction is done, 2D reprojected keypoints will be plotted in Traffic4D-Release/Result/<intersection_name>_keypoints/.
  2. 3D reconstructed trajectories and clusters: The clustered 3D trajectories are plotted on the top view map as Traffic4D-Release/Result/<intersection_name>_top_view.jpg.

Docker

We provide docker image with dependencies already set up. The steps in "Set up" can be skipped if you use docker image. You still need to clone the repo and download the dataset and put it in under Traffic4D-Release/.

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git

Pull Traffic4D docker image.

docker pull emrysli/traffic4d-release:latest

Then create a container and map the git repo into docker container to access the dataset. For example, if the cloned repo locates at host directory /home/xxx/Traffic4D-Release, <path_to_repo> should be /home/xxx. If <path_in_container> is /home/yyy, then /home/xxx/Traffic4D-Release will be mapped as /home/yyy/Traffic4D-Release inside the container.

docker run -it -v <path_to_repo>/Traffic4D-Release:<path_in_container>/Traffic4D-Release emrysli/traffic4d-release:latest /bin/bash

Inside container compile Traffic4D again.

# inside container
cd <path_in_container>/Traffic4D-Release/src/ceres
make

Run experiments.

cd <path_in_container>/Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Trouble Shooting

  1. tkinter module is missing
File "/usr/local/lib/python3.6/dist-packages/matplotlib/backends/_backend_tk.py", line 5, in <module>
    import tkinter as Tk
ModuleNotFoundError: No module named 'tkinter'

Solution: install tkinter.

sudo apt-get install python3-tk
  1. opencv import error such as
File "/usr/local/lib/python3.6/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libSM.so.6: cannot open shared object file: No such file or directory

Solution: install the missing libraries.

sudo apt-get install libsm6 libxrender1 libfontconfig1 libxext6

Citation

Traffic4D

@conference{Li-2021-127410,
author = {Fangyu Li and N. Dinesh Reddy and Xudong Chen and Srinivasa G. Narasimhan},
title = {Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision},
booktitle = {Proceedings of IEEE Intelligent Vehicles Symposium (IV '21)},
year = {2021},
month = {July},
publisher = {IEEE},
keywords = {Self-Supervision, vehicle Detection, 4D Reconstruction, 3D reconstuction, Pose Estimation.},
}

Occlusion-Net

@inproceedings{onet_cvpr19,
author = {Reddy, N. Dinesh and Vo, Minh and Narasimhan, Srinivasa G.},
title = {Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {7326--7335},
year = {2019}
}
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Source-to-Source Debuggable Derivatives in Pure Python

Tangent Tangent is a new, free, and open-source Python library for automatic differentiation. Existing libraries implement automatic differentiation b

Google 2.2k Jan 01, 2023
Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC)

ppg-vc Phonetic PosteriorGram (PPG)-Based Voice Conversion (VC) This repo implements different kinds of PPG-based VC models. Pretrained models. More m

Liu Songxiang 227 Dec 28, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022