Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Overview

Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision

Project | PDF | Poster
Fangyu Li, N. Dinesh Reddy, Xudong Chen and Srinivasa G. Narasimhan
Proceedings of IEEE Intelligent Vehicles Symposium (IV'21)
Best Paper Award

Following instructions below, the user will get keypoints, trajectory reconstruction and vehicular activity clustering results like

Set up

The set up process can be skipped if using docker. Please check "Docker" section.

Python

Python version 3.6.9 is used. Python packages are in requirements.txt .

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git
sudo apt-get install python3.6
sudo apt-get install python3-pip
cd Traffic4D-Release
pip3 install -r requirements.txt

C++

Traffic4D uses C++ libraries ceres and pybind for efficient optimization. pybind needs clang compiler, so Traffic4D uses clang compiler.

Install clang compiler

sudo apt-get install clang++-6.0

Install prerequisites for ceres

# CMake
sudo apt-get install cmake
# google-glog + gflags
sudo apt-get install libgoogle-glog-dev libgflags-dev
# BLAS & LAPACK
sudo apt-get install libatlas-base-dev
# Eigen3
sudo apt-get install libeigen3-dev
# SuiteSparse and CXSparse (optional)
sudo apt-get install libsuitesparse-dev

Download and install ceres

wget https://github.com/ceres-solver/ceres-solver/archive/1.12.0.zip
unzip 1.12.0.zip
cd ceres-solver-1.12.0/
mkdir build
cd build
cmake ..
make
sudo make install

Download and install pybind

git clone https://github.com/pybind/pybind11
cd pybind11
cmake .
make
sudo make install

Build Traffic4D optimization library

cd Traffic4D-Release/src/ceres
make

ceres_reconstruct.so and ceres_spline.so are generated under path Traffic4D-Release/src/ceres/.

Dataset

Download dataset and pre-generated results from here, and put it under Traffic4D-Release/.

cd Traffic4D-Release
mv Data-Traffic4D.zip ./
unzip Data-Traffic4D.zip

The directory should be like

Traffic4D-Release/
    Data-Traffic4D/
    └───fifth_morewood/
        └───fifth_morewood_init.vd
        └───top_view.png
        └───images/
                00001.jpg
                00002.jpg
                ...
                06288.jpg
    └───arterial_kennedy/
        └───arterial_kennedy_init.vd
        └───top_view.png
        └───images/
                <put AI City Challenge frames here>
        ...

The input and output paths can be modified in config/*.yml.

Explanation

1. Input videos

Sample videos in Traffic4D are provided. Note arterial_kennedy and dodge_century are from Nvidia AI City Challenge City-Scale Multi-Camera Vehicle Tracking Challenge Track. Please request the access to the dataset here. Once get the data, run

ffmpeg -i <mtmc-dir>/train/S01/c001/vdo.avi Traffic4D-Release/Data-Traffic4D/arterial_kennedy/images/%05d.jpg
ffmpeg -i <mtmc-dir>/test/S02/c007/vdo.avi Traffic4D-Release/Data-Traffic4D/dodge_century/images/%05d.jpg

to extract frames into images/.

2. Pre-Generated 2D results

Detected 2D bounding boxes, keypoints and tracking IDs are stored in *_init.vd. Check Occlusionnet implementation for detecting keypoints; V-IOU for multi-object tracking.

3. Output folder

Folder Traffic4D-Release/Result/ will be created by default.

Experiments

Run python exp/traffic4d.py config/<intersection_name>.yml <action>. Here YML configuration files for multiple intersections are provided under config/ folder. <action> shoulbe be reconstruction or clustering to perform longitudinal reconstruction and activity clustering sequentially. For example, below runs Fifth and Morewood intersection.

cd Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Results

Find these results in the output folder:

  1. 2D keypoints: If 3D reconstruction is done, 2D reprojected keypoints will be plotted in Traffic4D-Release/Result/<intersection_name>_keypoints/.
  2. 3D reconstructed trajectories and clusters: The clustered 3D trajectories are plotted on the top view map as Traffic4D-Release/Result/<intersection_name>_top_view.jpg.

Docker

We provide docker image with dependencies already set up. The steps in "Set up" can be skipped if you use docker image. You still need to clone the repo and download the dataset and put it in under Traffic4D-Release/.

git clone https://github.com/Emrys-Lee/Traffic4D-Release.git

Pull Traffic4D docker image.

docker pull emrysli/traffic4d-release:latest

Then create a container and map the git repo into docker container to access the dataset. For example, if the cloned repo locates at host directory /home/xxx/Traffic4D-Release, <path_to_repo> should be /home/xxx. If <path_in_container> is /home/yyy, then /home/xxx/Traffic4D-Release will be mapped as /home/yyy/Traffic4D-Release inside the container.

docker run -it -v <path_to_repo>/Traffic4D-Release:<path_in_container>/Traffic4D-Release emrysli/traffic4d-release:latest /bin/bash

Inside container compile Traffic4D again.

# inside container
cd <path_in_container>/Traffic4D-Release/src/ceres
make

Run experiments.

cd <path_in_container>/Traffic4D-Release
python3 exp/traffic4d.py config/fifth_morewood.yml reconstruction
python3 exp/traffic4d.py config/fifth_morewood.yml clustering

Trouble Shooting

  1. tkinter module is missing
File "/usr/local/lib/python3.6/dist-packages/matplotlib/backends/_backend_tk.py", line 5, in <module>
    import tkinter as Tk
ModuleNotFoundError: No module named 'tkinter'

Solution: install tkinter.

sudo apt-get install python3-tk
  1. opencv import error such as
File "/usr/local/lib/python3.6/dist-packages/cv2/__init__.py", line 3, in <module>
    from .cv2 import *
ImportError: libSM.so.6: cannot open shared object file: No such file or directory

Solution: install the missing libraries.

sudo apt-get install libsm6 libxrender1 libfontconfig1 libxext6

Citation

Traffic4D

@conference{Li-2021-127410,
author = {Fangyu Li and N. Dinesh Reddy and Xudong Chen and Srinivasa G. Narasimhan},
title = {Traffic4D: Single View Reconstruction of Repetitious Activity Using Longitudinal Self-Supervision},
booktitle = {Proceedings of IEEE Intelligent Vehicles Symposium (IV '21)},
year = {2021},
month = {July},
publisher = {IEEE},
keywords = {Self-Supervision, vehicle Detection, 4D Reconstruction, 3D reconstuction, Pose Estimation.},
}

Occlusion-Net

@inproceedings{onet_cvpr19,
author = {Reddy, N. Dinesh and Vo, Minh and Narasimhan, Srinivasa G.},
title = {Occlusion-Net: 2D/3D Occluded Keypoint Localization Using Graph Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
pages = {7326--7335},
year = {2019}
}
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
PAWS 🐾 Predicting View-Assignments with Support Samples

This repo provides a PyTorch implementation of PAWS (predicting view assignments with support samples), as described in the paper Semi-Supervised Learning of Visual Features by Non-Parametrically Pre

Facebook Research 437 Dec 23, 2022
An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise Weight Sharing) by Sensetime Research.

An integration of several popular automatic augmentation methods, including OHL (Online Hyper-Parameter Learning for Auto-Augmentation Strategy) and AWS (Improving Auto Augment via Augmentation Wise

45 Dec 08, 2022
This repository contains the implementation of the following paper: Cross-Descriptor Visual Localization and Mapping

Cross-Descriptor Visual Localization and Mapping This repository contains the implementation of the following paper: "Cross-Descriptor Visual Localiza

Mihai Dusmanu 81 Oct 06, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Domain Adaptive Video Segmentation via Temporal Consistency Regularization Updates 08/2021: check out our domain adaptation for sematic segmentation p

36 Dec 12, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Official repository for the paper "Self-Supervised Models are Continual Learners" (CVPR 2022)

Self-Supervised Models are Continual Learners This is the official repository for the paper: Self-Supervised Models are Continual Learners Enrico Fini

Enrico Fini 73 Dec 18, 2022
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Scene-Text-Detection-and-Recognition (Pytorch)

Scene-Text-Detection-and-Recognition (Pytorch) Competition URL: https://tbrain.t

Gi-Luen Huang 9 Jan 02, 2023