Scene-Text-Detection-and-Recognition (Pytorch)

Overview

Scene-Text-Detection-and-Recognition (Pytorch)

1. Proposed Method

The models

Our model comprises two parts: scene text detection and scene text recognition. the descriptions of these two models are as follow:

  • Scene Text Detection
    We employ YoloV5 [1] to detect the ROI (Region Of Interest) from an image and Resnet50 [2] to implement the ROI transformation algorithm. This algorithm transforms the coordinates detected by YoloV5 to the proper location, which fits the text well. YoloV5 can detect all ROIs that might be strings while ROI transformation can make the bbox more fit the region of the string. The visualization result is illustrated below, where the bbox of the dark green is ROI detected by YoloV5 and the bbox of the red is ROI after ROI transformation.

  • Scene Text Recognition
    We employ ViT [3] to recognize the string of bbox detected by YoloV5 since our task is not a single text recognition. The transformer-based model achieves the state-of-the-art performance in Natural Language Processing (NLP). The attention mechanism can make the model pay attention to the words that need to be output at the moment. The model architecture is demonstrated below.

The whole training process is shown in the figure below.

Data augmentation

  • Random Scale Resize
    We found that the sizes of the images in the public dataset are different. Therefore, if we resize the small image to the large, most of the image features will be lost. To solve this problem, we apply the random scale resize algorithm to obtain the low-resolution image from the high-resolution image in the training phase. The visualization results are demonstrated as follows.
Original image 72x72 --> 224x224 96x96 --> 224x224 121x121 --> 224x224 146x146 --> 224x224 196x196 --> 224x224
  • ColorJitter
    In the training phase, the model's input is RGB channel. To enhance the reliability of the model, we appply the collorjitter algorithm to make the model see the images with different contrast, brightness, saturation and hue value. And this kind of method is also widely used in image classification. The visualization results are demonstrated as follows.
Input image brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5 brightness=0.5 contrast=0.5 saturation=0.5 hue=0.5
  • Random Rotaion
    After we observe the training data, we found that most of the images in training data are square-shaped (original image), while some of the testing data is a little skewed. Therefore, we apply the random rotation algorithm to make the model more generalization. The visualization results are demonstrated as follows.
Original image Random Rotation Random Horizontal Flip Both

2. Demo

  • Predicted results
    Before we recognize the string bbox detected by YoloV5, we filter out the bbox with a size less than 45*45. Because the image resolution of a bbox with a size less than 45*45 is too low to recognize the correct string.
Input image Scene Text detection Scene Text recognition
驗車
委託汽車代檢
元力汽車公司
新竹區監理所
3c配件
玻璃貼
專業包膜
台灣大哥大
myfone
新店中正
加盟門市
西門町

排骨酥麵
非常感謝
tvbs食尚玩家
蘋果日報
壹週刊
財訊
錢櫃雜誌
聯合報
飛碟電台
等報導
排骨酥專賣店
西門町

排骨酥麵
排骨酥麵
嘉義店
永晟
電動工具行
492913338
  • Attention maps in ViT
    We also visualize the attention maps in ViT, to check whether the model focus on the correct location of the image. The visualization results are demonstrated as follows.
Original image Attention map

3. Competition Results

  • Public Scores
    We conducted extensive experiments, and The results are demonstrated below. From the results, we can see the improvement of the results by adding each module at each stage. At first, we only employed YoloV5 to detect all the ROI in the images, and the result of detection is not good enough. We also compare the result of ViT with data augmentation or not, the results show that our data augmentation is effective to solve this task (compare the last row and the sixth row). In addition, we filter out the bbox with a size less than 45*45 since the resolution of bbox is too low to recognize the correct strings.
Models(Detection/Recognition) Final score Precision Recall
YoloV5(L) / ViT(aug) 0.60926 0.7794 0.9084
YoloV5(L) +
ROI_transformation(Resnet50) / ViT(aug)
0.73148 0.9261 0.9017
YoloV5(L) +
ROI_transformation(Resnet50) +
reduce overlap bbox / ViT(aug)
0.78254 0.9324 0.9072
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug)
0.78527 0.9324 0.9072
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(40 * 40)
0.79373 0.9333 0.9029
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(45 * 45)
0.79466 0.9335 0.9011
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(50 * 50)
0.79431 0.9338 0.8991
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(no aug) + filter bbox(45 * 45)
0.73802 0.9335 0.9011
  • Private Scores
Models(Detection/Recognition) Final score Precision Recall
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(40 * 40)
0.7828 0.9328 0.8919
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(45 * 45)
0.7833 0.9323 0.8968
YoloV5(L) +
ROI_transformation(SEResnet50) +
reduce overlap bbox / ViT(aug) + filter bbox(50 * 50)
0.7830 0.9325 0.8944

4. Computer Equipment

  • System: Windows10、Ubuntu20.04

  • Pytorch version: Pytorch 1.7 or higher

  • Python version: Python 3.6

  • Testing:
    CPU: AMR Ryzen 7 4800H with Radeon Graphics RAM: 32GB
    GPU: NVIDIA GeForce RTX 1660Ti 6GB

  • Training:
    CPU: Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
    RAM: 256GB
    GPU: NVIDIA GeForce RTX 3090 24GB * 2

5. Getting Started

  • Clone this repo to your local
git clone https://github.com/come880412/Scene-Text-Detection-and-Recognition.git
cd Scene-Text-Detection-and-Recognition

Download pretrained models

  • Scene Text Detection
    Please download pretrained models from Scene_Text_Detection. There are three folders, "ROI_transformation", "yolo_models" and "yolo_weight". First, please put the weights in "ROI_transformation" to the path ./Scene_Text_Detection/Tranform_card/models/. Second, please put all the models in "yolo_models" to the ./Scene_Text_Detection/yolov5-master/. Finally, please put the weight in "yolo_weight" to the path ./Scene_Text_Detection/yolov5-master/runs/train/expl/weights/.

  • Scene Text Recogniton
    Please download pretrained models from Scene_Text_Recognition. There are two files in this foler, "best_accuracy.pth" and "character.txt". Please put the files to the path ./Scene_Text_Recogtion/saved_models/.

Inference

  • You should first download the pretrained models and change your path to ./Scene_Text_Detection/yolov5-master/
$ python Text_detection.py
  • The result will be saved in the path '../output/'. Where the folder "example" is the images detected by YoloV5 and after ROI transformation, the file "example.csv" records the coordinates of the bbox, starting from the upper left corner of the coordinates clockwise, respectively (x1, y1), (x2, y2), (x3, y3), and (x4, y4), and the file "exmaple_45.csv" is the predicted result.
  • If you would like to visualize the bbox detected by yoloV5, you can use the function public_crop() in the script ../../data_process.py to extract the bbox from images.

Training

  • You should first download the dataset provided by official, then put the data in the path '../dataset/'. After that, you could use the following script to transform the original data to the training format.
$ python data_process.py
  • Scene_Text_Detection
    There are two models for the scene text detection task: ROI transformation and YoloV5. You could use the follow script to train these two models.
$ cd ./Scene_Text_Detection/yolov5-master # YoloV5
$ python train.py

$ cd ../Tranform_card/ # ROI Transformation
$ python Trainer.py
  • Scene_Text_Recognition
$ cd ./Scene_Text_Recogtion # ViT for text recognition
$ python train.py

References

[1] https://github.com/ultralytics/yolov5
[2] https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
[3] https://github.com/roatienza/deep-text-recognition-benchmark
[4] https://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
[5] Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 7132-7141).

Owner
Gi-Luen Huang
Gi-Luen Huang
Face Library is an open source package for accurate and real-time face detection and recognition

Face Library Face Library is an open source package for accurate and real-time face detection and recognition. The package is built over OpenCV and us

52 Nov 09, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Neural implicit reconstruction experiments for the Vector Neuron paper

Neural Implicit Reconstruction with Vector Neurons This repository contains code for the neural implicit reconstruction experiments in the paper Vecto

Congyue Deng 35 Jan 02, 2023
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
This is a computer vision based implementation of the popular childhood game 'Hand Cricket/Odd or Even' in python

Hand Cricket Table of Content Overview Installation Game rules Project Details Future scope Overview This is a computer vision based implementation of

Abhinav R Nayak 6 Jan 12, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Code for one-stage adaptive set-based HOI detector AS-Net.

AS-Net Code for one-stage adaptive set-based HOI detector AS-Net. Mingfei Chen*, Yue Liao*, Si Liu, Zhiyuan Chen, Fei Wang, Chen Qian. "Reformulating

Mingfei Chen 45 Dec 09, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
PyTorch version of the paper 'Enhanced Deep Residual Networks for Single Image Super-Resolution' (CVPRW 2017)

About PyTorch 1.2.0 Now the master branch supports PyTorch 1.2.0 by default. Due to the serious version problem (especially torch.utils.data.dataloade

Sanghyun Son 2.1k Jan 01, 2023
Aircraft design optimization made fast through modern automatic differentiation

Aircraft design optimization made fast through modern automatic differentiation. Plug-and-play analysis tools for aerodynamics, propulsion, structures, trajectory design, and much more.

Peter Sharpe 394 Dec 23, 2022
Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques"

THESIS_CAIRONE_FIORENTINO Politecnico of Turin Thesis: "Implementation and Evaluation of an Educational Chatbot based on NLP Techniques" GENERATE TOKE

cairone_fiorentino97 1 Dec 10, 2021
Patch-Diffusion Code (AAAI2022)

Patch-Diffusion This is an official PyTorch implementation of "Patch Diffusion: A General Module for Face Manipulation Detection" in AAAI2022. Require

H 7 Nov 02, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Official implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis https://arxiv.org/abs/2011.13775

CIPS -- Official Pytorch Implementation of the paper Image Generators with Conditionally-Independent Pixel Synthesis Requirements pip install -r requi

Multimodal Lab @ Samsung AI Center Moscow 201 Dec 21, 2022