AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Overview

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning.

Label prediction on node a by Kipf-GCN and ConfGCN (this paper). L0 is a’s true label. Shade intensity of a node reflects the estimated score of label L1 assigned to that node. Since Kipf-GCN is not capable of estimating influence of one node on another, it is misled by the dominant label L1 in node a’s neighborhood and thereby making the wrong assignment. ConfGCN, on the other hand, estimates confidences (shown by bars) over the label scores, and uses them to increase influence of nodes b and c to estimate the right label on a. Please refer to paper for more details.

Dependencies

  • Compatible with TensorFlow 1.x and Python 3.x.
  • Dependencies can be installed using requirements.txt.

Dataset:

  • We use citation network datasets: Cora, Citeseer, Pubmed, and CoraML for evaluation in our paper.
  • Cora, Citeseer, and Pubmed datasets was taken directly from here. CoraML dataset was taken from here and was placed in the same format as other datasets for semi-supervised settings.
  • data.zip contains all the datasets in the required format.

Evaluate pretrained model:

  • Run setup.sh for setting up the environment and extracting the datasets and pre-trained models.
  • confgcn.py contains TensorFlow (1.x) based implementation of ConfGCN (proposed method).
  • Execute evaluate.sh for evaluating pre-trained ConfGCN model on all four datasets.

Training from scratch:

  • Execute setup.sh for setting up the environment and extracting datasets.

  • config/hyperparams.jsoncontains the best parameters for all four datasets.

  • For training ConfGCN run:

    python conf_gcn.py -data citeseer -name new_run

Citation

Please cite us if you use this code.

@InProceedings{vashishth19a,
  title = 	 {Confidence-based Graph Convolutional Networks for Semi-Supervised Learning},
  author = 	 {Vashishth, Shikhar and Yadav, Prateek and Bhandari, Manik and Talukdar, Partha},
  booktitle = 	 {Proceedings of Machine Learning Research},
  pages = 	 {1792--1801},
  year = 	 {2019},
  editor = 	 {Chaudhuri, Kamalika and Sugiyama, Masashi},
  volume = 	 {89},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {},
  month = 	 {16--18 Apr},
  publisher = 	 {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v89/vashishth19a/vashishth19a.pdf},
  url = 	 {http://proceedings.mlr.press/v89/vashishth19a.html}
}

For any clarification, comments, or suggestions please create an issue or contact [email protected].

Owner
MALL Lab (IISc)
MALL Lab (IISc)
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Deep Inside Convolutional Networks - This is a caffe implementation to visualize the learnt model

Deep Inside Convolutional Networks This is a caffe implementation to visualize the learnt model. Part of a class project at Georgia Tech Problem State

Jigar 61 Apr 15, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Nonuniform-to-Uniform Quantization: Towards Accurate Quantization via Generalized Straight-Through Estimation. In CVPR 2022.

Nonuniform-to-Uniform Quantization This repository contains the training code of N2UQ introduced in our CVPR 2022 paper: "Nonuniform-to-Uniform Quanti

Zechun Liu 60 Dec 28, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models are Pix2Pix, Pix2PixHD, CycleGAN and PointWise.

RGB2NIR_Experimental This repository contains several image-to-image translation models, whcih were tested for RGB to NIR image generation. The models

5 Jan 04, 2023
Compute execution plan: A DAG representation of work that you want to get done. Individual nodes of the DAG could be simple python or shell tasks or complex deeply nested parallel branches or embedded DAGs themselves.

Hello from magnus Magnus provides four capabilities for data teams: Compute execution plan: A DAG representation of work that you want to get done. In

12 Feb 08, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Adversarial Attacks are Reversible via Natural Supervision

Adversarial Attacks are Reversible via Natural Supervision ICCV2021 Citation @InProceedings{Mao_2021_ICCV, author = {Mao, Chengzhi and Chiquier

Computer Vision Lab at Columbia University 20 May 22, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
PyTorch Implementation of [1611.06440] Pruning Convolutional Neural Networks for Resource Efficient Inference

PyTorch implementation of [1611.06440 Pruning Convolutional Neural Networks for Resource Efficient Inference] This demonstrates pruning a VGG16 based

Jacob Gildenblat 836 Dec 26, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022