SOTA model in CIFAR10

Overview

A PyTorch Implementation of CIFAR Tricks

调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。

0. Requirements

  • Python 3.6+
  • torch=1.8.0+cu111
  • torchvision+0.9.0+cu111
  • tqdm=4.26.0
  • PyYAML=6.0

1. Implements

1.1 Tricks

  • Warmup
  • Cosine LR Decay
  • SAM
  • Label Smooth
  • KD
  • Adabound
  • Xavier Kaiming init
  • lr finder

1.2 Augmentation

  • Auto Augmentation
  • Cutout
  • Mixup
  • RICAP
  • Random Erase
  • ShakeDrop

2. Training

2.1 CIFAR-10训练示例

WideResNet28-10 baseline on CIFAR-10:

python train.py --dataset cifar10

WideResNet28-10 +RICAP on CIFAR-10:

python train.py --dataset cifar10 --ricap True

WideResNet28-10 +Random Erasing on CIFAR-10:

python train.py --dataset cifar10 --random-erase True

WideResNet28-10 +Mixup on CIFAR-10:

python train.py --dataset cifar10 --mixup True

3. Results

3.1 原pytorch-ricap的结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.82(96.18) 0.158 3.89
WideResNet28-10 +RICAP 2.82(97.18) 0.141 2.85
WideResNet28-10 +Random Erasing 3.18(96.82) 0.114 4.65
WideResNet28-10 +Mixup 3.02(96.98) 0.158 3.02

3.2 Reimplementation结果

Model Error rate Loss Error rate (paper)
WideResNet28-10 baseline 3.78(96.22) 3.89
WideResNet28-10 +RICAP 2.81(97.19) 2.85
WideResNet28-10 +Random Erasing 3.03(96.97) 0.113 4.65
WideResNet28-10 +Mixup 2.93(97.07) 0.158 3.02

3.3 Half data快速训练验证各网络结构

reimplementation models(no augmentation, half data,epoch200,bs128)

Model Error rate Loss
lenet(cpu爆炸) (70.76)
wideresnet 3.78(96.22)
resnet20 (89.72)
senet (92.34)
resnet18 (92.08)
resnet34 (92.48)
resnet50 (91.72)
regnet (92.58)
nasnet out of mem
shake_resnet26_2x32d (93.06)
shake_resnet26_2x64d (94.14)
densenet (92.06)
dla (92.58)
googlenet (91.90) 0.2675
efficientnetb0(利用率低且慢) (86.82) 0.5024
mobilenet(利用率低) (89.18)
mobilenetv2 (91.06)
pnasnet (90.44)
preact_resnet (90.76)
resnext (92.30)
vgg(cpugpu利用率都高) (88.38)
inceptionv3 (91.84)
inceptionv4 (91.10)
inception_resnet_v2 (83.46)
rir (92.34) 0.3932
squeezenet(CPU利用率高) (89.16) 0.4311
stochastic_depth_resnet18 (90.22)
xception
dpn (92.06) 0.3002
ge_resnext29_8x64d (93.86) 巨慢

3.4 测试cpu gpu影响

TEST: scale/kernel ToyNet

修改网络的卷积层深度,并进行训练,可以得到以下结论:

结论:lenet这种卷积量比较少,只有两层的,cpu利用率高,gpu利用率低。在这个基础上增加深度,用vgg那种直筒方式增加深度,发现深度越深,cpu利用率越低,gpu利用率越高。

修改训练过程的batch size,可以得到以下结论:

结论:bs会影响收敛效果。

3.5 StepLR优化下测试cutout和mixup

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 200 96.33
shake_resnet26_2x64d 200 96.99
shake_resnet26_2x64d 200 96.60
shake_resnet26_2x64d 200 96.46

3.6 测试SAM,ASAM,Cosine,LabelSmooth

architecture epoch SAM ASAM Cosine LR Decay LabelSmooth C10 test acc (%)
shake_resnet26_2x64d 200 96.51
shake_resnet26_2x64d 200 96.80
shake_resnet26_2x64d 200 96.61
shake_resnet26_2x64d 200 96.57

PS:其他库在加长训练过程(epoch=1800)情况下可以实现 shake_resnet26_2x64d achieved 97.71% test accuracy with cutout and mixup!!

3.7 测试cosine lr + shake

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 300 96.66
shake_resnet26_2x64d 300 97.21
shake_resnet26_2x64d 300 96.90
shake_resnet26_2x64d 300 96.73

1800 epoch CIFAR ZOO中结果,由于耗时过久,未进行复现。

architecture epoch cutout mixup C10 test acc (%)
shake_resnet26_2x64d 1800 96.94(cifar zoo)
shake_resnet26_2x64d 1800 97.20(cifar zoo)
shake_resnet26_2x64d 1800 97.42(cifar zoo)
shake_resnet26_2x64d 1800 97.71(cifar zoo)

3.8 Divide and Co-training方案研究

  • lr:
    • warmup (20 epoch)
    • cosine lr decay
    • lr=0.1
    • total epoch(300 epoch)
  • bs=128
  • aug:
    • Random Crop and resize
    • Random left-right flipping
    • AutoAugment
    • Normalization
    • Random Erasing
    • Mixup
  • weight decay=5e-4 (bias and bn undecayed)
  • kaiming weight init
  • optimizer: nesterov

复现:((v100:gpu1) 4min*300/60=20h) top1: 97.59% 本项目目前最高值。

python train.py --model 'pyramidnet272' \
                --name 'divide-co-train' \
                --autoaugmentation True \ 
                --random-erase True \
                --mixup True \
                --epochs 300 \
                --sched 'warmcosine' \
                --optims 'nesterov' \
                --bs 128 \
                --root '/home/dpj/project/data'

3.9 测试多种数据增强

architecture epoch cutout mixup autoaugment random-erase C10 test acc (%)
shake_resnet26_2x64d 200 96.42
shake_resnet26_2x64d 200 96.49
shake_resnet26_2x64d 200 96.17
shake_resnet26_2x64d 200 96.25
shake_resnet26_2x64d 200 96.20
shake_resnet26_2x64d 200 95.82
shake_resnet26_2x64d 200 96.02
shake_resnet26_2x64d 200 96.00
shake_resnet26_2x64d 200 95.83
shake_resnet26_2x64d 200 95.89
shake_resnet26_2x64d 200 96.25
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_orgin' --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_c' --cutout True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_m' --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_a' --autoaugmentation True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_r' --random-erase True  --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cm'  --cutout True --mixup True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ca' --cutout True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_cr' --cutout True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ma' --mixup True --autoaugmentation True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_mr' --mixup True --random-erase True --bs 64
python train.py --model 'shake_resnet26_2x64d' --name 'ss64_ar' --autoaugmentation True --random-erase True  --bs 64

4. Reference

[1] https://github.com/BIGBALLON/CIFAR-ZOO

[2] https://github.com/pprp/MutableNAS

[3] https://github.com/clovaai/CutMix-PyTorch

[4] https://github.com/4uiiurz1/pytorch-ricap

[5] https://github.com/NUDTNASLab/pytorch-image-models

[6] https://github.com/facebookresearch/LaMCTS

[7] https://github.com/Alibaba-MIIL/ImageNet21K

Owner
PJDong
Computer vision learner, deep learner
PJDong
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Code repository for the paper "Doubly-Trained Adversarial Data Augmentation for Neural Machine Translation" with instructions to reproduce the results.

Doubly Trained Neural Machine Translation System for Adversarial Attack and Data Augmentation Languages Experimented: Data Overview: Source Target Tra

Steven Tan 1 Aug 18, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
BboxToolkit is a tiny library of special bounding boxes.

BboxToolkit is a light codebase collecting some practical functions for the special-shape detection, such as oriented detection

jbwang1997 73 Jan 01, 2023
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022
(CVPR 2021) Lifting 2D StyleGAN for 3D-Aware Face Generation

Lifting 2D StyleGAN for 3D-Aware Face Generation Official implementation of paper "Lifting 2D StyleGAN for 3D-Aware Face Generation". Requirements You

Yichun Shi 66 Nov 29, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
using STGCN to achieve egg classification task

EEG Classification   The task requires us to classify electroencephalography(EEG) into six categories, including human body, human face, animal body,

4 Jun 13, 2022