Official PyTorch implementation of the ICRA 2021 paper: Adversarial Differentiable Data Augmentation for Autonomous Systems.

Overview

Adversarial Differentiable Data Augmentation

This repository provides the official PyTorch implementation of the ICRA 2021 paper:

Adversarial Differentiable Data Augmentation for Autonomous Systems
Author: Manli Shu, Yu Shen, Ming C Lin, Tom Goldstein

Environment

The code has been tested on:

  • python == 3.7.9
  • pytorch == 1.10.0
  • torchvision == 0.8.2
  • kornia == 0.6.2
    More dependencies can be found at ./requirements.txt

Hardware requirements:

  • The default training and testing setting requires 1 GPU.

Data

Datasets appeared in our paper can be downloaded/generated by following the directions in this page.

Note: The "distortion" factor is added differently in our work, for which we cropped out the zero-padding around the distorted images. To reproduce the results in our paper, the same post-processing should be applied to the generated images with the "distortion" corruption:

python utils/cropping.py --dataset_root ${dataset_root} --dataset ${valData}

, where testing data with different corruptions are sorted in different folders under ${dataset_root} and ${valData} is the folder name of the original validation set without any corruption.

Training

  1. Set the ${dataset_root} and the ${dataset_name} arguments in ./scripts/train.sh. The "train" and "val" splits of the ${dataset_name} are supposed to be stored separatly under ${dataset_root}.
  2. Set the hyper-parameters for data augmentation in ./scripts/train.sh.
  3. Run:
    bash ./scripts/train.sh
    

Testing

  1. Set the paths to your dataset in ./scripts/test.sh
  2. exp_name: help locating the model checkpoint (should be one of the training exp).
  3. epoch: specify the model checkpoint
  4. Run:
    bash ./scripts/test.sh
    

Note that in the test script, we test the "combined" corrupting factor seperately, where we test a total of 25 random combination of corruptions. Test images with combined corrupting factors are generated on the fly, and we fix the random seed for reproducibility. (The randomly generated combination can be found in ./data/comb_param.txt. )

Citation

If you find the code or our method useful, please consider citing:

@InProceedings{shu2021advaug,
    author={Shu, Manli and Shen, Yu and Lin, Ming C. and Goldstein, Tom},
    title={Adversarial Differentiable Data Augmentation for Autonomous Systems}, 
    booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, 
    year={2021}
}
Owner
Manli
Manli
Scalable implementation of Lee / Mykland (2012) and Ait-Sahalia / Jacod (2012) Jump tests for noisy high frequency data

JumpDetectR Name of QuantLet : JumpDetectR Published in : 'To be published as "Jump dynamics in high frequency crypto markets"' Description : 'Scala

LvB 12 Jan 01, 2023
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
TensorFlow for Raspberry Pi

TensorFlow on Raspberry Pi It's officially supported! As of TensorFlow 1.9, Python wheels for TensorFlow are being officially supported. As such, this

Sam Abrahams 2.2k Dec 16, 2022
Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Implementation of gMLP, an all-MLP replacement for Transformers, in Pytorch

Phil Wang 383 Jan 02, 2023
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Temporal copying and local hallucination for video inpainting This repository contains the implementation of my master's thesis "Temporal copying and

David Álvarez de la Torre 1 Dec 02, 2022
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation

Context-Aware Image Matting for Simultaneous Foreground and Alpha Estimation This is the inference codes of Context-Aware Image Matting for Simultaneo

Qiqi Hou 125 Oct 22, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022