End-to-end beat and downbeat tracking in the time domain.

Related tags

Deep Learningwavebeat
Overview

WaveBeat

End-to-end beat and downbeat tracking in the time domain.

| Paper | Code | Video | Slides |

Setup

First clone the repo.

git clone https://github.com/csteinmetz1/wavebeat.git
cd wavebeat

Setup a virtual environment and activate it. This requires that you use Python 3.8.

python3 -m venv env/
source env/bin/activate

Next install numpy, cython, and aiohttp first, manually.

pip install numpy cython aiohttp

Then install the wavebeat module.

python setup.py install

This will ensure that madmom installs properly, as it currently fails unless cython, numpy, and aiohttp are installed first.

Predicting beats

To begin you will first need to download the pre-trained model here. Place it in the checkpoints/ directory, rename to get the .ckpt file.

cd checkpoints
wget https://zenodo.org/record/5525120/files/wavebeat_epoch%3D98-step%3D24749.ckpt?download=1
mv wavebeat_epoch=98-step=24749.ckpt?download=1 wavebeat_epoch=98-step=24749.ckpt

Functional interface

If you would like to use the functional interface you can create a script and import wavebeat as follows.

from wavebeat.tracker import beatTracker

beat, downbeats = beatTracker('audio.wav')

Script interface

We provide a simple script interface to load an audio file and predict the beat and downbeat locations with a pre-trained model. Run the model by providing a path to an audio file.

python predict.py path_to_audio.wav

Evaluation

In order to run the training and evaluation code you will additionally need to install all of the development requirements.

pip install -r requirements.txt

To recreate our reported results you will first need to have access to the datasets. See the paper for details on where to find them.

Use the command below to run the evaluation on GPU.

python simple_test.py \
--logdir mdoels/wavebeatv1/ \
--ballroom_audio_dir /path/to/BallroomData \
--ballroom_annot_dir /path/to/BallroomAnnotations \
--beatles_audio_dir /path/to/The_Beatles \
--beatles_annot_dir /path/to/The_Beatles_Annotations/beat/The_Beatles \
--hainsworth_audio_dir /path/to/hainsworth/wavs \
--hainsworth_annot_dir /path/to/hainsworth/beat \
--rwc_popular_audio_dir /path/to/rwc_popular/audio \
--rwc_popular_annot_dir /path/to/rwc_popular/beat \
--gtzan_audio_dir /path/to/gtzan/ \
--gtzan_annot_dir /path/to/GTZAN-Rhythm/jams \
--smc_audio_dir /path/to/SMC_MIREX/SMC_MIREX_Audio \
--smc_annot_dir /path/to/SMC_MIREX/SMC_MIREX_Annotations_05_08_2014 \
--num_workers 8 \

Training

To train the model with the same hyperparameters as those used in the paper, assuming the datasets are available, run the following command.

python train.py \
--ballroom_audio_dir /path/to/BallroomData \
--ballroom_annot_dir /path/to/BallroomAnnotations \
--beatles_audio_dir /path/to/The_Beatles \
--beatles_annot_dir /path/to/The_Beatles_Annotations/beat/The_Beatles \
--hainsworth_audio_dir /path/to/hainsworth/wavs \
--hainsworth_annot_dir /path/to/hainsworth/beat \
--rwc_popular_audio_dir /path/to/rwc_popular/audio \
--rwc_popular_annot_dir /path/to/rwc_popular/beat \
--gpus 1 \
--preload \
--precision 16 \
--patience 10 \
--train_length 2097152 \
--eval_length 2097152 \
--model_type dstcn \
--act_type PReLU \
--norm_type BatchNorm \
--channel_width 32 \
--channel_growth 32 \
--augment \
--batch_size 16 \
--lr 1e-3 \
--gradient_clip_val 4.0 \
--audio_sample_rate 22050 \
--num_workers 24 \
--max_epochs 100 \

Cite

If you use this code in your work please consider citing us.

@inproceedings{steinmetz2021wavebeat,
    title={{WaveBeat}: End-to-end beat and downbeat tracking in the time domain},
    author={Steinmetz, Christian J. and Reiss, Joshua D.},
    booktitle={151st AES Convention},
    year={2021}}
Owner
Christian J. Steinmetz
Building tools for musicians and audio engineers (often with machine learning). PhD Student at Queen Mary University of London.
Christian J. Steinmetz
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Rl-quickstart - Reinforcement Learning Quickstart

Reinforcement Learning Quickstart To get setup with the repository, git clone ht

UCLA DataRes 3 Jun 16, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Food recognition model using convolutional neural network & computer vision

Food recognition model using convolutional neural network & computer vision. The goal is to match or beat the DeepFood Research Paper

Hemanth Chandran 1 Jan 13, 2022