This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Overview

Amortized Assimilation

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the time the forecast is initialized. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce effective estimation schemes. We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations with no need for ground truth data. We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.

Installation

Requirements

This code can be memory heavy as each experiment unrolls at least 40 assimilation steps (which from a memory perspective is equivalent to a 40x deeper network plus whatever is needed for the simulation). Current settings are optimized to max out memory usage on a GTX1070 GPU. The easiest ways to tune memory usage are network width and ensemble size. Checkpointing could significantly improve memory utilization but is not currently implemented.

To install the dependencies, use the provided requirements.txt file:

pip install -r requirements.txt 

There is also a dependency on torchdiffeq. Instructions for installing torchdiffeq can be found at https://github.com/rtqichen/torchdiffeq, but are also copied below:

pip install git+https://github.com/rtqichen/torchdiffeq

To run the DA comparison models, you will need to install DAPPER. Instructions can be found here: https://github.com/nansencenter/DAPPER.

Installing this package

A setup.py file has been included for installation. Navigate to the home folder and run:

pip install -e . 

Run experiments

All experiments can be run from experiments/run_*.py. Default settings are those used in the paper. First navigate to the experiments directory then execute:

L96 Full Observations

python run_L96Conv.py --obs_conf full_obs

L96 Partial Observations (every fourth).

python run_L96Conv.py --obs_conf every_4th_dim_partial_obs

VL20 Partial

python run_VLConv.py --obs_conf every_4th_dim_partial_obs

KS Full

python run_KS.py 

Other modifications of interest might be to adjust the step size for the integrator (--step_size, default .1), observation error(--noise, default 1.), ensemble size (--m, default 10), or network width (--hidden_size, default 64 for conv). The L96 code also includes options for self-supervised and supervised analysis losses (ss_analysis, clean_analysis) used for creating Figure 6 from the paper. Custom observation operators can be created in the same style as those found in obs_configs.py.

Parameters for traditional DA approaches were tuned via grid search over smaller sequences. Those hyperparameters were then used for longer assimilation sequences.

To test a new architecture, you'll want to ensure it's obeying the same API as the models in models.py, but otherwise it should slot in without major issues.

Datasets

Code is included for generating the Lorenz 96, VL 20 and KS datasets. This can be found under amortized_assimilation/data_utils.py

References

DAPPER: Raanes, P. N., & others. (2018). nansencenter/DAPPER: Version 0.8. https://doi.org/10.5281/zenodo.2029296

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1835825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


If you found the code or ideas in this repository useful, please consider citing:

@article{mccabe2021l2assim,
  title={Learning to Assimilate in Chaotic Dynamical Systems},
  author={McCabe, Michael and Brown, Jed},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv This repo contains Official Implementat

Yujun Shi 24 Nov 01, 2022
Implementation for the paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR2021).

Invertible Image Denoising This is the PyTorch implementation of paper: Invertible Denoising Network: A Light Solution for Real Noise Removal (CVPR 20

157 Dec 25, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
Pytorch implemenation of Stochastic Multi-Label Image-to-image Translation (SMIT)

SMIT: Stochastic Multi-Label Image-to-image Translation This repository provides a PyTorch implementation of SMIT. SMIT can stochastically translate a

Biomedical Computer Vision Group @ Uniandes 37 Mar 01, 2022
IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL.

IJON SPACE EXPLORER IJON is an annotation mechanism that analysts can use to guide fuzzers such as AFL. Using only a small (usually one line) annotati

Chair for Sys­tems Se­cu­ri­ty 146 Dec 16, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
A deep learning CNN model to identify and classify and check if a person is wearing a mask or not.

Face Mask Detection The Model is designed to check if any human is wearing a mask or not. Dataset Description The Dataset contains a total of 11,792 i

1 Mar 01, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
The UI as a mobile display for OP25

OP25 Mobile Control Head A 'remote' control head that interfaces with an OP25 instance. We take advantage of some data end-points left exposed for the

Sarah Rose Giddings 13 Dec 28, 2022
Pytorch implementation of "Forward Thinking: Building and Training Neural Networks One Layer at a Time"

forward-thinking-pytorch Pytorch implementation of Forward Thinking: Building and Training Neural Networks One Layer at a Time Requirements Python 2.7

Kim Heecheol 65 Oct 06, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022