A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Overview

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Datasets

Because of copyright issues, both the MalwareBazaar dataset and the MalwareDrift dataset just contain the malware SHA-256 hash and all of the related information which can be find in the Datasets folder. You can download raw malware samples from the open-source malware release website by applying an api-key, and use disassembly tool to convert the malware into binary and disassembly files.

  • The MalwareBazaar dataset : you can download the samples from MalwareBazaar.
  • The MalwareDrift dataset : you can download the samples from VirusShare.

Experimental Settings

Model Training Strategy Optimizer Learning Rate Batch Size Input Format
ResNet-50 From Scratch Adam 1e-3 64 224*224 color image
ResNet-50 Transfer Adam 1e-3 All data* 224*224 color image
VGG-16 From Scratch SGD 5e-6** 64 224*224 color image
VGG-16 Transfer SGD 5e-6 64 224*224 color image
Inception-V3 From Scratch Adam 1e-3 64 224*224 color image
Inception-V3 Transfer Adam 1e-3 All data 224*224 color image
IMCFN From Scratch SGD 5e-6*** 32 224*224 color image
IMCFN Transfer SGD 5e-6*** 32 224*224 color image
CBOW+MLP - SGD 1e-3 128 CBOW: byte sequences; MLP: 256*256 matrix
MalConv - SGD 1e-3 32 2MB raw byte values
MAGIC - Adam 1e-4 10 ACFG
Word2Vec+KNN - - - - Word2Vec: Opcode sequences; KNN distance measure: WMD
MCSC - SGD 5e-3 64 Opcode sequences

* The batch size is set to 128 for the MalwareBazaar dataset
** The learning rate is set to 5e-5 for the Malimg dataset and 1e-5 for the MalwareBazaar dataset
*** The learning rate is set to 1e-5 for the MalwareBazaar dataset
CBOW is with default parameters in the Word2Vec package in the Gensim library of Python

Graphically Analysis of Table 4 and Table 5

Here is a more detailed figure analysis for Table 4 and Table 5 in order to make the raw information in the paper easier to digest.

Table 4

  • The classification performance (F1-Score) of each approach on three datasets classification performance

    The figure shows the classification performance (F1-Score) of each methods on three datasets. It is noteworthy that the Malimg dataset only contains malware images, and thus it can only be used to evaluate the 4 image-based methods.

  • The average classification performance (F1-Score) of each approach for three datasets average classification performance

    The figure shows the average classification performance (F1-Score) of each method for the three datasets. Among them, the F1-score corresponding to each model is obtained by averaging the F1-score of the model on three datasets, which represents the average performance.

  • The train time and resource overhead of each method on three datasets
    resource consumption

    The figure shows the train time (left subgraph) and resource overhead (right subgraph) needed for every method on three datasets. The bar immediately to the right of the train time bar is the memory overhead of this model. Similarly, there are only 4 image-based models for the Malimg dataset.

Table 5

  • The classification performance (F1-Score) of transfer learning for image-based approaches on three datasets transfer learning

    This figure shows the F1-Score obtained by every image-based model using the strategy of training from scratch, 10% transfer learning, 50% transfer learning, 80% transfer learning, and 100% transfer learning, respectively. Every subgraph correspond to the BIG-15, Malimg, and MalwareBazaar dataset, respectively.

  • The train time and resource overhead of transfer learning for image-based approaches on three datasets
    resource consumption

    Each row correspond to the BIG-15, Mmalimg, and MalwareBazaar dataset, respectively. For each row, there are 4 models (ResNet-50, VGG-16, Inception-V3 and IMCFN). For each model, there are 8 bars on the right, the left 4 bars stands for the train time under 10%, 50%, 80% and 100% transfer learning, and the right 4 bars are the memory overhead under 10%, 50%, 80% and 100% transfer learning.

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Official Paddle Implementation] [Huggingface Gradio Demo] [Unofficial

442 Dec 16, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Code for How To Create A Fully Automated AI Based Trading System With Python

AI Based Trading System This code works as a boilerplate for an AI based trading system with yfinance as data source and RobinHood or Alpaca as broker

Rubén 196 Jan 05, 2023
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python

FlappyAI Flappy bird automation using Neuroevolution of Augmenting Topologies (NEAT) in Python Everything Used Genetic Algorithm especially NEAT conce

Eryawan Presma Y. 2 Mar 24, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022