A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Overview

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

Datasets

Because of copyright issues, both the MalwareBazaar dataset and the MalwareDrift dataset just contain the malware SHA-256 hash and all of the related information which can be find in the Datasets folder. You can download raw malware samples from the open-source malware release website by applying an api-key, and use disassembly tool to convert the malware into binary and disassembly files.

  • The MalwareBazaar dataset : you can download the samples from MalwareBazaar.
  • The MalwareDrift dataset : you can download the samples from VirusShare.

Experimental Settings

Model Training Strategy Optimizer Learning Rate Batch Size Input Format
ResNet-50 From Scratch Adam 1e-3 64 224*224 color image
ResNet-50 Transfer Adam 1e-3 All data* 224*224 color image
VGG-16 From Scratch SGD 5e-6** 64 224*224 color image
VGG-16 Transfer SGD 5e-6 64 224*224 color image
Inception-V3 From Scratch Adam 1e-3 64 224*224 color image
Inception-V3 Transfer Adam 1e-3 All data 224*224 color image
IMCFN From Scratch SGD 5e-6*** 32 224*224 color image
IMCFN Transfer SGD 5e-6*** 32 224*224 color image
CBOW+MLP - SGD 1e-3 128 CBOW: byte sequences; MLP: 256*256 matrix
MalConv - SGD 1e-3 32 2MB raw byte values
MAGIC - Adam 1e-4 10 ACFG
Word2Vec+KNN - - - - Word2Vec: Opcode sequences; KNN distance measure: WMD
MCSC - SGD 5e-3 64 Opcode sequences

* The batch size is set to 128 for the MalwareBazaar dataset
** The learning rate is set to 5e-5 for the Malimg dataset and 1e-5 for the MalwareBazaar dataset
*** The learning rate is set to 1e-5 for the MalwareBazaar dataset
CBOW is with default parameters in the Word2Vec package in the Gensim library of Python

Graphically Analysis of Table 4 and Table 5

Here is a more detailed figure analysis for Table 4 and Table 5 in order to make the raw information in the paper easier to digest.

Table 4

  • The classification performance (F1-Score) of each approach on three datasets classification performance

    The figure shows the classification performance (F1-Score) of each methods on three datasets. It is noteworthy that the Malimg dataset only contains malware images, and thus it can only be used to evaluate the 4 image-based methods.

  • The average classification performance (F1-Score) of each approach for three datasets average classification performance

    The figure shows the average classification performance (F1-Score) of each method for the three datasets. Among them, the F1-score corresponding to each model is obtained by averaging the F1-score of the model on three datasets, which represents the average performance.

  • The train time and resource overhead of each method on three datasets
    resource consumption

    The figure shows the train time (left subgraph) and resource overhead (right subgraph) needed for every method on three datasets. The bar immediately to the right of the train time bar is the memory overhead of this model. Similarly, there are only 4 image-based models for the Malimg dataset.

Table 5

  • The classification performance (F1-Score) of transfer learning for image-based approaches on three datasets transfer learning

    This figure shows the F1-Score obtained by every image-based model using the strategy of training from scratch, 10% transfer learning, 50% transfer learning, 80% transfer learning, and 100% transfer learning, respectively. Every subgraph correspond to the BIG-15, Malimg, and MalwareBazaar dataset, respectively.

  • The train time and resource overhead of transfer learning for image-based approaches on three datasets
    resource consumption

    Each row correspond to the BIG-15, Mmalimg, and MalwareBazaar dataset, respectively. For each row, there are 4 models (ResNet-50, VGG-16, Inception-V3 and IMCFN). For each model, there are 8 bars on the right, the left 4 bars stands for the train time under 10%, 50%, 80% and 100% transfer learning, and the right 4 bars are the memory overhead under 10%, 50%, 80% and 100% transfer learning.

Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
A benchmark dataset for emulating atmospheric radiative transfer in weather and climate models with machine learning (NeurIPS 2021 Datasets and Benchmarks Track)

ClimART - A Benchmark Dataset for Emulating Atmospheric Radiative Transfer in Weather and Climate Models Official PyTorch Implementation Using deep le

21 Dec 31, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022