TransVTSpotter: End-to-end Video Text Spotter with Transformer

Overview

TransVTSpotter: End-to-end Video Text Spotter with Transformer

License: MIT

Introduction

A Multilingual, Open World Video Text Dataset and End-to-end Video Text Spotter with Transformer

Link to our MOVText: A Large-Scale, Multilingual Open World Dataset for Video Text Spotting

Updates

  • (08/04/2021) Refactoring the code.

  • (10/20/2021) The complete code has been released .

ICDAR2015(video) Tracking challenge

Methods MOTA MOTP IDF1 Mostly Matched Partially Matched Mostly Lost
TransVTSpotter 45.75 73.58 57.56 658 611 647

Notes

  • The training time is on 8 NVIDIA V100 GPUs with batchsize 16.
  • We use the models pre-trained on COCOTextV2.
  • We do not release the recognition code due to the company's regulations.

Demo

Installation

The codebases are built on top of Deformable DETR and TransTrack.

Requirements

  • Linux, CUDA>=9.2, GCC>=5.4
  • Python>=3.7
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone [email protected]:weijiawu/TransVTSpotter.git
cd TransVTSpotter
cd models/ops
python setup.py build install
cd ../..
pip install -r requirements.txt
  1. Prepare datasets and annotations
# pretrain COCOTextV2
python3 track_tools/convert_COCOText_to_coco.py

# ICDAR15
python3 track_tools/convert_ICDAR15video_to_coco.py

COCOTextV2 dataset is available in COCOTextV2.

python3 track_tools/convert_crowdhuman_to_coco.py

ICDAR2015 dataset is available in icdar2015.

python3 track_tools/convert_mot_to_coco.py
  1. Pre-train on COCOTextV2
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/Pretrain_COCOTextV2 --dataset_file pretrain --coco_path ./Data/COCOTextV2 --batch_size 2  --with_box_refine --num_queries 500 --epochs 300 --lr_drop 100 --resume ./output/Pretrain_COCOTextV2/checkpoint.pth

python3 track_tools/Pretrain_model_to_mot.py

The pre-trained model is available Baidu Netdisk, password:59w8. Google Netdisk

And the MOTA 44% can be found here password:xnlw. Google Netdisk

  1. Train TransVTSpotter
python3 -m torch.distributed.launch --nproc_per_node=8 --use_env main_track.py  --output_dir ./output/ICDAR15 --dataset_file text --coco_path ./Data/ICDAR2015_video --batch_size 2  --with_box_refine  --num_queries 300 --epochs 80 --lr_drop 40 --resume ./output/Pretrain_COCOTextV2/pretrain_coco.pth
  1. Visualize TransVTSpotter
python3 track_tools/Evaluation_ICDAR15_video/vis_tracking.py

License

TransVTSpotter is released under MIT License.

Citing

If you use TranVTSpotter in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{wu2021opentext,
  title={A Bilingual, OpenWorld Video Text Dataset and End-to-end Video Text Spotter with Transformer},
  author={Weijia Wu, Debing Zhang, Yuanqiang Cai, Sibo Wang, Jiahong Li, Zhuang Li, Yejun Tang, Hong Zhou},
  journal={35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks},
  year={2021}
}
Owner
weijiawu
computer version, OCR I am looking for a research intern or visiting chance.
weijiawu
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
"Graph Neural Controlled Differential Equations for Traffic Forecasting", AAAI 2022

Graph Neural Controlled Differential Equations for Traffic Forecasting Setup Python environment for STG-NCDE Install python environment $ conda env cr

Jeongwhan Choi 55 Dec 28, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Code for ICDM2020 full paper: "Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning"

Subg-Con Sub-graph Contrast for Scalable Self-Supervised Graph Representation Learning (Jiao et al., ICDM 2020): https://arxiv.org/abs/2009.10273 Over

34 Jul 06, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
An alarm clock coded in Python 3 with Tkinter

Tkinter-Alarm-Clock An alarm clock coded in Python 3 with Tkinter. Run python3 Tkinter Alarm Clock.py in a terminal if you have Python 3. NOTE: This p

CodeMaster7000 1 Dec 25, 2021
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022