GeDML is an easy-to-use generalized deep metric learning library

Overview

Logo

Documentation build

News

  • [2021-9-6]: v0.0.0 has been released.

Introduction

GeDML is an easy-to-use generalized deep metric learning library, which contains:

  • State-of-the-art DML algorithms: We contrain 18+ losses functions and 6+ sampling strategies, and divide these algorithms into three categories (i.e., collectors, selectors, and losses).
  • Bridge bewteen DML and SSL: We attempt to bridge the gap between deep metric learning and self-supervised learning through specially designed modules, such as collectors.
  • Auxiliary modules to assist in building: We also encapsulates the upper interface for users to start programs quickly and separates the codes and configs for managing hyper-parameters conveniently.

Installation

Pip

pip install gedml

Framework

This project is modular in design. The pipeline diagram is as follows:

Pipeline

Code structure

  • _debug: Debug files.
  • demo: Demos of configuration files.
  • docs: Documentation.
  • src: Source code.
    • core: Losses, selectors, collectors, etc.
    • client: Tmux manager.
    • config: Config files including link, convert, assert and params.
    • launcher: Manager, Trainer, Tester, etc.
    • recorder: Recorder.

Method

Collectors

method description
BaseCollector Base class
DefaultCollector Do nothing
ProxyCollector Maintain a set of proxies
MoCoCollector paper: Momentum Contrast for Unsupervised Visual Representation Learning
SimSiamCollector paper: Exploring Simple Siamese Representation Learning
HDMLCollector paper: Hardness-Aware Deep Metric Learning
DAMLCollector paper: Deep Adversarial Metric Learning
DVMLCollector paper: Deep Variational Metric Learning

Losses

classifier-based

method description
CrossEntropyLoss Cross entropy loss for unsupervised methods
LargeMarginSoftmaxLoss paper: Large-Margin Softmax Loss for Convolutional Neural Networks
ArcFaceLoss paper: ArcFace: Additive Angular Margin Loss for Deep Face Recognition
CosFaceLoss paper: CosFace: Large Margin Cosine Loss for Deep Face Recognition

pair-based

method description
ContrastiveLoss paper: Learning a Similarity Metric Discriminatively, with Application to Face Verification
MarginLoss paper: Sampling Matters in Deep Embedding Learning
TripletLoss paper: Learning local feature descriptors with triplets and shallow convolutional neural networks
AngularLoss paper: Deep Metric Learning with Angular Loss
CircleLoss paper: Circle Loss: A Unified Perspective of Pair Similarity Optimization
FastAPLoss paper: Deep Metric Learning to Rank
LiftedStructureLoss paper: Deep Metric Learning via Lifted Structured Feature Embedding
MultiSimilarityLoss paper: Multi-Similarity Loss With General Pair Weighting for Deep Metric Learning
NPairLoss paper: Improved Deep Metric Learning with Multi-class N-pair Loss Objective
SignalToNoiseRatioLoss paper: Signal-To-Noise Ratio: A Robust Distance Metric for Deep Metric Learning
PosPairLoss paper: Exploring Simple Siamese Representation Learning

proxy-based

method description
ProxyLoss paper: No Fuss Distance Metric Learning Using Proxies
ProxyAnchorLoss paper: Proxy Anchor Loss for Deep Metric Learning
SoftTripleLoss paper: SoftTriple Loss: Deep Metric Learning Without Triplet Sampling

Selectors

method description
BaseSelector Base class
DefaultSelector Do nothing
DenseTripletSelector Select all triples
DensePairSelector Select all pairs

Quickstart

Please set the environment variable WORKSPACE first to indicate where to manage your project.

Initialization

Use ConfigHandler to create all objects.

config_handler = ConfigHandler()
config_handler.get_params_dict()
objects_dict = config_handler.create_all()

Start

Use manager to automatically call trainer and tester.

manager = utils.get_default(objects_dict, "managers")
manager.run()

Directly use trainer and tester.

trainer = utils.get_default(objects_dict, "trainers")
tester = utils.get_default(objects_dict, "testers")
recorder = utils.get_default(objects_dict, "recorders")

# start to train
utils.func_params_mediator(
    [objects_dict],
    trainer.__call__
)

# start to test
metrics = utils.func_params_mediator(
    [
        {"recorders": recorder},
        objects_dict,
    ],
    tester.__call__
)

Document

For more information, please refer to:

📖 👉 Docs

Some specific guidances:

Configs

We will continually update the optimal parameters of different configs in TsinghuaCloud

Code Reference

TODO:

  • assert parameters
  • distributed methods and Non-distributed methods!!!
  • write github action to automate unit-test, package publish and docs building.
  • add cross-validation splits protocol.
Owner
Borui Zhang
I am a first year Ph.D student in the Department of Automation at THU. My research direction is computer vision.
Borui Zhang
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Repository of Jupyter notebook tutorials for teaching the Deep Learning Course at the University of Amsterdam (MSc AI), Fall 2020

Phillip Lippe 1.1k Jan 07, 2023
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Image Restoration Toolbox (PyTorch). Training and testing codes for DPIR, USRNet, DnCNN, FFDNet, SRMD, DPSR, BSRGAN, SwinIR

Kai Zhang 2k Dec 31, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus

UmlsBERT: Clinical Domain Knowledge Augmentation of Contextual Embeddings Using the Unified Medical Language System Metathesaurus General info This is

71 Oct 25, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
a minimal terminal with python 😎😉

Meterm a terminal with python 😎 How to use Clone Project: $ git clone https://github.com/motahharm/meterm.git Run: in Terminal: meterm.exe Or pip ins

Motahhar.Mokfi 5 Jan 28, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022