This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Related tags

Deep LearningZaCQ
Overview

Clarifying Questions for Query Refinement in Source Code Search

This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

It consists of five folders:

  • codesearch/ - API to access the CodeSearchNet datasets and neural bag-of-words code retrieval method.

  • cq/ - Implementation of the ZaCQ system, including an implementation of the the TaskNav development task extraction algorithm and two baseline query refinement methods.

  • data/ - Includes pretrained code search model and config files for task extraction.

  • evaluation/ - Scripts to run and evaluate ZaCQ.

  • interface/ - Backend and Frontend servers for a search interface implementing ZaCQ.

Setup

  1. Clone the CodeSearchNet package to the root directory, and download the CSN datasets
cd ZaCQ
git clone https://github.com/github/CodeSearchNet.git
cd CodeSearchNet/scripts
./download_and_preprocess
  1. Use a CSN model to create vector representations for candidate code search results. A pretrained Neural BoW model is included in this package.
cd codesearch
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python _setup.py

This will save and index vectors in the data folder. It will also generate search results for the 99 CSN queries.

  1. Task extraction is fairly quick for small sets of code search results, but it is expensive to do repeatedly. To expedite the evaluation, we cache the extracted tasks for the results of the 99 CSN queries, as well as keywords for all functions in the datasets.
cd cq
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
python _setup.py

Cached tasks and keywords are stored in the data folder.

Evaluation

To evaluate the ZaCQ and the other query refinement methods on the CSN queries, you may use the following:

cd evaluation
python run_queries.py
python evaluate.py

The run_queries script determines the subset of CSN queries that can be automatically evaluated, and simulates interactive refinement sessions for all valid questions for each language in CSN. For ZaCQ, the script runs through a set of predefined hyperparameter combinations. The script calculates NDCG, MAP, and MRE metrics for each refinement method and hyperparameter configuration, and stores them in the data/output folder

The evaluate script averages the metrics across all languages after 1-N rounds of refinement. For ZaCQ, it also records the best-performing hyperparamter combination after n rounds of refinement.

Interface

To run the interactive search interface, you need to run two backend servers and start the GUI server:

cd interface/cqserver
python ClarifyAPI.py
cd interface/searchserver
python SearchAPI.py
cd interface/gui
npm start

By default, you can access the GUI at localhost:3000

Owner
Zachary Eberhart
Zachary Eberhart
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
An Official Repo of CVPR '20 "MSeg: A Composite Dataset for Multi-Domain Segmentation"

This is the code for the paper: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation (CVPR 2020, Official Repo) [CVPR PDF] [Journal PDF] J

226 Nov 05, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
maximal update parametrization (µP)

Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer) Paper link | Blog link In Tensor Programs V: Tuning Large Neural Networks

Microsoft 694 Jan 03, 2023
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
RoadMap and preparation material for Machine Learning and Data Science - From beginner to expert.

ML-and-DataScience-preparation This repository has the goal to create a learning and preparation roadMap for Machine Learning Engineers and Data Scien

33 Dec 29, 2022
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022