Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

Related tags

Deep LearningMC-GAN
Overview

MC-GAN in PyTorch

This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you use this code or our collected font dataset for your research, please cite:

Multi-Content GAN for Few-Shot Font Style Transfer; Samaneh Azadi, Matthew Fisher, Vladimir Kim, Zhaowen Wang, Eli Shechtman, Trevor Darrell, in arXiv, 2017.

Prerequisites:

  • Linux or macOS
  • Python 2.7
  • CPU or NVIDIA GPU + CUDA CuDNN

Getting Started

Installation

  • Install PyTorch and dependencies from http://pytorch.org
  • Install Torch vision from the source.
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
pip install visdom
pip install dominate
pip install scikit-image
  • Clone this repo:
mkdir FontTransfer
cd FontTransfer
git clone https://github.com/azadis/MC-GAN
cd MC-GAN

MC-GAN train/test

  • Download our gray-scale 10K font data set:

./datasets/download_font_dataset.sh Capitals64

../datasets/Capitals64/test_dict/dict.pkl makes observed random glyphs be similar at different test runs on Capitals64 dataset. It is a dictionary with font names as keys and random arrays containing indices from 0 to 26 as their values. Lengths of the arrays are equal to the number of non-observed glyphs in each font.

../datasets/Capitals64/BASE/Code New Roman.0.0.png is a fixed simple font used for training the conditional GAN in the End-to-End model.

./datasets/download_font_dataset.sh public_web_fonts

Given a few letters of font ${DATA} for examples 5 letters {T,O,W,E,R}, training directory ${DATA}/A should contain 5 images each with dimension 64x(64x26)x3 where 5 - 1 = 4 letters are given and the rest are zeroed out. Each image should be saved as ${DATA}_${IND}.png where ${IND} is the index (in [0,26) ) of the letter omitted from the observed set. Training directory ${DATA}/B contains images each with dimension 64x64x3 where only the omitted letter is given. Image names are similar to the ones in ${DATA}/A though. ${DATA}/A/test/${DATA}.png contains all 5 given letters as a 64x(64x26)x3-dimensional image. Structure of the directories for above real-world fonts (including only a few observed letters) is as follows. One can refer to the examples in ../datasets/public_web_fonts for more information.

../datasets/public_web_fonts
                      └── ${DATA}/
                          ├── A/
                          │  ├──train/${DATA}_${IND}.png
                          │  └──test/${DATA}.png
                          └── B/
                             ├──train/${DATA}_${IND}.png
                             └──test/${DATA}.png
  • (Optional) Download our synthetic color gradient font data set:

./datasets/download_font_dataset.sh Capitals_colorGrad64
  • Train Glyph Network:
./scripts/train_cGAN.sh Capitals64

Model parameters will be saved under ./checkpoints/GlyphNet_pretrain.

  • Test Glyph Network after specific numbers of epochs (e.g. 400 by setting EPOCH=400 in ./scripts/test_cGAN.sh):
./scripts/test_cGAN.sh Capitals64
  • (Optional) View the generated images (e.g. after 400 epochs):
cd ./results/GlyphNet_pretrain/test_400/

If you are running the code in your local machine, open index.html. If you are running remotely via ssh, on your remote machine run:

python -m SimpleHTTPServer 8881

Then on your local machine, start an SSH tunnel: ssh -N -f -L localhost:8881:localhost:8881 [email protected]_host Now open your browser on the local machine and type in the address bar:

localhost:8881
  • (Optional) Plot loss functions values during training, from MC-GAN directory:
python util/plot_loss.py --logRoot ./checkpoints/GlyphNet_pretrain/
  • Train End-to-End network (e.g. on DATA=ft37_1): You can train Glyph Network following instructions above or download our pre-trained model by running:
./pretrained_models/download_cGAN_models.sh

Now, you can train the full model:

./scripts/train_StackGAN.sh ${DATA}
  • Test End-to-End network:
./scripts/test_StackGAN.sh ${DATA}

results will be saved under ./results/${DATA}_MCGAN_train.

  • (Optional) Make a video from your results in different training epochs:

First, train your model and save model weights in every epoch by setting opt.save_epoch_freq=1 in scripts/train_StackGAN.sh. Then test in different epochs and make the video by:

./scripts/make_video.sh ${DATA}

Follow the previous steps to visualize generated images and training curves where you replace GlyphNet_train with ${DATA}_StackGAN_train.

Training/test Details

  • Flags: see options/train_options.py, options/base_options.py and options/test_options.py for explanations on each flag.

  • Baselines: if you want to use this code to get results of Image Translation baseline or want to try tiling glyphs rather than stacking, refer to the end of scripts/train_cGAN.sh . If you only want to train OrnaNet on top of clean glyphs, refer to the end of scripts/train_StackGAN.sh.

  • Image Dimension: We have tried this network only on 64x64 images of letters. We do not scale and crop images since we set both opt.FineSize and opt.LoadSize to 64.

Citation

If you use this code or the provided dataset for your research, please cite our paper:

@inproceedings{azadi2018multi,
  title={Multi-content gan for few-shot font style transfer},
  author={Azadi, Samaneh and Fisher, Matthew and Kim, Vladimir and Wang, Zhaowen and Shechtman, Eli and Darrell, Trevor},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  volume={11},
  pages={13},
  year={2018}
}

Acknowledgements

We thank Elena Sizikova for downloading all fonts used in the 10K font data set.

Code is inspired by pytorch-CycleGAN-and-pix2pix.

Owner
Samaneh Azadi
CS PhD student at UC Berkeley
Samaneh Azadi
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system

Recommender-Systems Two types of Recommender System : Content-based Recommender System and Colaborating filtering based recommender system So the data

Yash Kumar 0 Jan 20, 2022
The codes I made while I practiced various TensorFlow examples

TensorFlow_Exercises The codes I made while I practiced various TensorFlow examples About the codes I didn't create these codes by myself, but re-crea

Terry Taewoong Um 614 Dec 08, 2022
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110.06922). Our implementations are built on top of MMdetection3D.

Wang, Yue 539 Jan 07, 2023
Python scripts using the Mediapipe models for Halloween.

Mediapipe-Halloween-Examples Python scripts using the Mediapipe models for Halloween. WHY Mainly for fun. But this repository also includes useful exa

Ibai Gorordo 23 Jan 06, 2023
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Offical implementation for "Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation".

Trash or Treasure? An Interactive Dual-Stream Strategy for Single Image Reflection Separation (NeurIPS 2021) by Qiming Hu, Xiaojie Guo. Dependencies P

Qiming Hu 31 Dec 20, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
A python library for time-series smoothing and outlier detection in a vectorized way.

tsmoothie A python library for time-series smoothing and outlier detection in a vectorized way. Overview tsmoothie computes, in a fast and efficient w

Marco Cerliani 517 Dec 28, 2022