An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

Overview

MixHop and N-GCN

PWC Arxiv codebeat badge repo sizebenedekrozemberczki

A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019) and "A Higher-Order Graph Convolutional Layer" (NeurIPS 2018).


Abstract

Recent methods generalize convolutional layers from Euclidean domains to graph-structured data by approximating the eigenbasis of the graph Laplacian. The computationally-efficient and broadly-used Graph ConvNet of Kipf & Welling, over-simplifies the approximation, effectively rendering graph convolution as a neighborhood-averaging operator. This simplification restricts the model from learning delta operators, the very premise of the graph Laplacian. In this work, we propose a new Graph Convolutional layer which mixes multiple powers of the adjacency matrix, allowing it to learn delta operators. Our layer exhibits the same memory footprint and computational complexity as a GCN. We illustrate the strength of our proposed layer on both synthetic graph datasets, and on several real-world citation graphs, setting the record state-of-the-art on Pubmed.

This repository provides a PyTorch implementation of MixHop and N-GCN as described in the papers:

MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard, Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. ICML, 2019. [Paper]

A Higher-Order Graph Convolutional Layer. Sami A Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Hrayr Harutyunyan. NeurIPS, 2018. [Paper]

The original TensorFlow implementation of MixHop is available [Here].

Requirements

The codebase is implemented in Python 3.5.2. package versions used for development are just below.

networkx          2.4
tqdm              4.28.1
numpy             1.15.4
pandas            0.23.4
texttable         1.5.0
scipy             1.1.0
argparse          1.1.0
torch             1.1.0
torch-sparse      0.3.0

Datasets

The code takes the **edge list** of the graph in a csv file. Every row indicates an edge between two nodes separated by a comma. The first row is a header. Nodes should be indexed starting with 0. A sample graph for `Cora` is included in the `input/` directory. In addition to the edgelist there is a JSON file with the sparse features and a csv with the target variable.

The **feature matrix** is a sparse binary one it is stored as a json. Nodes are keys of the json and feature indices are the values. For each node feature column ids are stored as elements of a list. The feature matrix is structured as:

{ 0: [0, 1, 38, 1968, 2000, 52727],
  1: [10000, 20, 3],
  2: [],
  ...
  n: [2018, 10000]}

The **target vector** is a csv with two columns and headers, the first contains the node identifiers the second the targets. This csv is sorted by node identifiers and the target column contains the class meberships indexed from zero.

NODE ID Target
0 3
1 1
2 0
3 1
... ...
n 3

Options

Training an N-GCN/MixHop model is handled by the `src/main.py` script which provides the following command line arguments.

Input and output options

  --edge-path       STR    Edge list csv.         Default is `input/cora_edges.csv`.
  --features-path   STR    Features json.         Default is `input/cora_features.json`.
  --target-path     STR    Target classes csv.    Default is `input/cora_target.csv`.

Model options

  --model             STR     Model variant.                 Default is `mixhop`.               
  --seed              INT     Random seed.                   Default is 42.
  --epochs            INT     Number of training epochs.     Default is 2000.
  --early-stopping    INT     Early stopping rounds.         Default is 10.
  --training-size     INT     Training set size.             Default is 1500.
  --validation-size   INT     Validation set size.           Default is 500.
  --learning-rate     FLOAT   Adam learning rate.            Default is 0.01.
  --dropout           FLOAT   Dropout rate value.            Default is 0.5.
  --lambd             FLOAT   Regularization coefficient.    Default is 0.0005.
  --layers-1          LST     Layer sizes (upstream).        Default is [200, 200, 200]. 
  --layers-2          LST     Layer sizes (bottom).          Default is [200, 200, 200].
  --cut-off           FLOAT   Norm cut-off for pruning.      Default is 0.1.
  --budget            INT     Architecture neuron budget.    Default is 60.

Examples

The following commands learn a neural network and score on the test set. Training a model on the default dataset.

$ python src/main.py

Training a MixHop model for a 100 epochs.

$ python src/main.py --epochs 100

Increasing the learning rate and the dropout.

$ python src/main.py --learning-rate 0.1 --dropout 0.9

Training a model with diffusion order 2:

$ python src/main.py --layers 64 64

Training an N-GCN model:

$ python src/main.py --model ngcn

License


Comments
  • FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    hello, when i run src/main.py,the error message appears: File "pandas_libs\parsers.pyx", line 361, in pandas._libs.parsers.TextReader.cinit File "pandas_libs\parsers.pyx", line 653, in pandas._libs.parsers.TextReader._setup_parser_source FileNotFoundError: [Errno 2] No such file or directory: './input/cora_edges.csv'

    do you know how to solve it?

    opened by tanjia123456 4
  • Citeseer and Pubmed Datasets

    Citeseer and Pubmed Datasets

    Hi Benedek,

    Thank you so much for the code. I want to run your code on Citeseer and Pubmed datasets. Would you mind providing Citeseer and Pubmed data in this format? By the way, after running MixHop model with default parameters I got the test accuracy 0.7867. Did the accuracy depend on the system that the code is running?

    Thanks in advance

    opened by bousejin 3
  • IndexError:

    IndexError:

    hello, when I run main.py, the error message occurs:

    File "D:\anaconda3.4\lib\site-packages\torch_sparse\spmm.py", line 30, in spmm out = matrix[col] IndexError: index 10241 is out of bounds for dimension 0 with size 10241

    the content of the spmm.py: `# import torch from torch_scatter import scatter_add

    def spmm(index, value, m, n, matrix): """Matrix product of sparse matrix with dense matrix. 稀疏矩阵与稠密矩阵的矩阵乘积

    Args:
        index (:class:`LongTensor`): The index tensor of sparse matrix.
        value (:class:`Tensor`): The value tensor of sparse matrix.
        m (int): The first dimension of corresponding dense matrix.
        n (int): The second dimension of corresponding dense matrix.
        matrix (:class:`Tensor`): The dense matrix.
      :rtype: :class:`Tensor`
    """
    
    assert n == matrix.size(0)
    
    row, col = index
    
    matrix = matrix if matrix.dim() > 1 else matrix.unsqueeze(-1)
    
    out = matrix[col]
    out = out * value.unsqueeze(-1)
    out = scatter_add(out, row, dim=0, dim_size=m)
    
    return out
    

    ` by the way, I use my own datasets, and the number of node is 10242. do you know how to solve it?

    opened by tanjia123456 2
  • some problem about codes

    some problem about codes

    When I run the code, some error occured as follows: MixHop-and-N-GCN-master\src\utils.py", line 45, in feature_reader out_features["indices"] = torch.LongTensor(np.concatenate([features.row.reshape(-1,1), features.col.reshape(-1,1)],axis=1).T) TypeError: can't convert np.ndarray of type numpy.int32. The only supported types are: float64, float32, float16, int64, int32, int16, int8, and uint8. I search it on the Internet and found that it seems to be a list of lists that are not of the same length. I was stuck in it and do not know how to correct it! Looking forward to your help!!Thanks!!

    opened by junkangwu 2
  • About

    About "torch_scatter"

    I cannot successfully install "torch_scatter". When I run the command line : pip3 install torch_scatter, an error always occurs, just like below. I tried to solve the problem, but I don't find the correct method. Could you help me? Thanks a lot!

    The error: ... cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1


    Failed building wheel for torch-scatter Running setup.py clean for torch-scatter Failed to build torch-scatter Installing collected packages: torch-scatter Running setup.py install for torch-scatter ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile: running install running build running build_py creating build creating build/lib.linux-x86_64-3.5 creating build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mul.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/mean.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/sub.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/min.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/std.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/init.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/max.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/div.py -> build/lib.linux-x86_64-3.5/torch_scatter copying torch_scatter/add.py -> build/lib.linux-x86_64-3.5/torch_scatter creating build/lib.linux-x86_64-3.5/test copying test/test_multi_gpu.py -> build/lib.linux-x86_64-3.5/test copying test/utils.py -> build/lib.linux-x86_64-3.5/test copying test/test_std.py -> build/lib.linux-x86_64-3.5/test copying test/init.py -> build/lib.linux-x86_64-3.5/test copying test/test_forward.py -> build/lib.linux-x86_64-3.5/test copying test/test_backward.py -> build/lib.linux-x86_64-3.5/test creating build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/ext.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/init.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils copying torch_scatter/utils/gen.py -> build/lib.linux-x86_64-3.5/torch_scatter/utils running build_ext building 'torch_scatter.scatter_cpu' extension creating build/temp.linux-x86_64-3.5 creating build/temp.linux-x86_64-3.5/cpu x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/TH -I/home/zgh/.local/lib/python3.5/site-packages/torch/lib/include/THC -I/usr/include/python3.5m -c cpu/scatter.cpp -o build/temp.linux-x86_64-3.5/cpu/scatter.o -Wno-unused-variable -DTORCH_EXTENSION_NAME=scatter_cpu -D_GLIBCXX_USE_CXX11_ABI=0 -std=c++11 cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ cpu/scatter.cpp:1:29: fatal error: torch/extension.h: No such file or directory compilation terminated. error: command 'x86_64-linux-gnu-gcc' failed with exit status 1

    ----------------------------------------
    

    Command "/usr/bin/python3 -u -c "import setuptools, tokenize;file='/tmp/pip-build-ijd9s63n/torch-scatter/setup.py';exec(compile(getattr(tokenize, 'open', open)(file).read().replace('\r\n', '\n'), file, 'exec'))" install --record /tmp/pip-4tkx7v_s-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-ijd9s63n/torch-scatter/ You are using pip version 8.1.1, however version 19.1.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command.

    opened by zhangguanghui1 2
  • running error

    running error

    hello, when I run main.py, the error message occurs: File "/home/tj/anaconda3/lib/python3.6/site-packages/torch_sparse/init.py", line 22, in raise OSError(e) OSError: libcusparse.so.10.0: cannot open shared object file: No such file or directory

    my python version 3.6 cuda10.0 torch1.0.1 torch-sparse0.5.1 do you know how to solve it?

    opened by tanjia123456 1
  • Higher Powers Implementation

    Higher Powers Implementation

    image

    https://github.com/benedekrozemberczki/MixHop-and-N-GCN/blob/6e4ae00055fc1aecd972081ef9c152b0e9de37c1/src/layers.py#L54-L56

    To me it looks like this is implementing H(l+1) = σ(A^j * H(l) * W(l))

    image

    Can you explain where W_j and the concatenation are taking place?

    opened by datavistics 1
  • This paper was accepted in NeuralPS 2018?

    This paper was accepted in NeuralPS 2018?

    I didn't find this paper "A Higher-Order Graph Convolutional Layer" in NeuralPS 2018 accepted list. So I am not sure whether this paper has been accepted?

    opened by Jhy1993 1
Releases(v_00001)
Owner
Benedek Rozemberczki
Machine Learning Engineer at AstraZeneca | PhD from The University of Edinburgh.
Benedek Rozemberczki
This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

GP-VAE This repository provides datasets and code for preprocessing, training and testing models for the paper: Diverse Text Generation via Variationa

Wanyu Du 18 Dec 29, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
SAAVN - Sound Adversarial Audio-Visual Navigation,ICLR2022 (In PyTorch)

SAAVN SAAVN Code release for paper "Sound Adversarial Audio-Visual Navigation,IC

YinfengYu 10 Aug 30, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022