Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

Overview

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set)


Description

The PyOpenVINO is a spin-off product from my deep learning algorithm study work. This project is aiming at neither practical performance nor rich functionalities. PyOpenVINO can load an OpenVINO IR model (.xml/.bin) and run it. The implementation is quite straightforward and naive. No Optimization technique is used. Thus, the code is easy to read and modify. Supported API is quite limited, but it mimics OpenVINO IE Python API. So, you can easily read and modify the sample code too.

  • Developed as a spin-off from my deep learning study work.
  • Very slow and limited functionality. Not a general DL inference engine.
  • Naive and straightforward code: (I hope) This is a good reference for learning deep-learning technology.
  • Extensible ops: Ops are implemented as plugins. You can easily add your ops as needed.

How to run

Steps 1 and 2 are optional since the converted MNIST IR model is provided.

  1. (Optional) Train a model and generate a 'saved_model' with TensorFlow
python mnist-tf-training.py

The trained model data will be created under ./mnist-savedmodel directory.

  1. (Optional) Convert TF saved_model into OpenVINO IR model
    Prerequisite: You need to have OpenVINO installed (Model Optimizer is required).
convert-model.bat

Converted IR model (.xml/.bin) will be generated in ./models directory.

  1. Run pyOpenVINO sample program
python test_pyopenvino.py

You'll see the output like this.

pyopenvino>python test_pyopenvino.py
inputs: [{'name': 'conv2d_input', 'type': 'Parameter', 'version': 'opset1', 'data': {'element_type': 'f32', 'shape': (1, 1, 28, 28)}, 'output': {0: {'precision': 'FP32', 'dims': (1, 1, 28, 28)}}}]
outputs: [{'name': 'Func/StatefulPartitionedCall/output/_11:0', 'type': 'Result', 'version': 'opset1', 'input': {0: {'precision': 'FP32', 'dims': (1, 10)}}}]
# node_name, time (sec)
conv2d_input Parameter, 0.0
conv2d_input/scale_copy Const, 0.0
StatefulPartitionedCall/sequential/conv2d/Conv2D Convolution, 0.11315417289733887
StatefulPartitionedCall/sequential/conv2d/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d/Relu ReLU, 0.0010142326354980469
StatefulPartitionedCall/sequential/max_pooling2d/MaxPool MaxPool, 0.020931482315063477
StatefulPartitionedCall/sequential/conv2d_1/Conv2D/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Conv2D Convolution, 0.04333162307739258
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/max_pooling2d_1/MaxPool MaxPool, 0.006029367446899414
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D/ReadVariableOp Const, 0.0010688304901123047
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D Convolution, 0.004073381423950195
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose/value6071024 Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose Transpose, 0.0
StatefulPartitionedCall/sequential/flatten/Const Const, 0.0
StatefulPartitionedCall/sequential/flatten/Reshape Reshape, 0.0
StatefulPartitionedCall/sequential/dense/MatMul/ReadVariableOp Const, 0.0010004043579101562
StatefulPartitionedCall/sequential/dense/MatMul MatMul, 0.0013704299926757812
StatefulPartitionedCall/sequential/dense/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul MatMul, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense_1/Softmax SoftMax, 0.0009992122650146484
Func/StatefulPartitionedCall/output/_11:0 Result, 0.0
@TOTAL_TIME, 0.21120882034301758
0.21120882034301758 sec/inf
Raw result: {'Func/StatefulPartitionedCall/output/_11:0': array([[7.8985136e-07, 2.0382247e-08, 9.9999917e-01, 1.0367385e-10,
        1.0184062e-10, 1.6024957e-12, 2.0729640e-10, 1.6014919e-08,
        6.5354638e-10, 9.5946295e-14]], dtype=float32)}
Result: [2 0 1 7 8 6 3 4 5 9]
  1. Run Draw-and-Inter demo
python draw-and-infer.py

How to Operate

  • Left click to draw points.
  • Right click to clear the canvas.
    This demo program is using 'numpy' kernels for performance.
    draw-and-infer

A Littile Description of the Implementation

IR model internal representation

This inference engine uses networkx.DiGraph as the internal representation of the IR model. IR model will be translated into nodes and edges.
The nodes represent the ops, and it holds the attributes of the ops (e.g., strides, dilations, etc.).
The edges represent the connection between the nodes. The edges hold the port number for both ends.
The intermediate output from the nodes (feature maps) will be stored in the data attributes in the output port of the node (G.nodes[node_id_num]['output'][port_num]['data'] = feat_map)

An example of the contents (attributes) of a node

node id= 14
 name : StatefulPartitionedCall/sequential/target_conv_layer/Conv2D
 type : Convolution
 version : opset1
 data :
     auto_pad : valid
     dilations : 1, 1
     pads_begin : 0, 0
     pads_end : 0, 0
     strides : 1, 1
 input :
     0 :
         precision : FP32
         dims : (1, 64, 5, 5)
     1 :
         precision : FP32
         dims : (64, 64, 3, 3)
 output :
     2 :
         precision : FP32
         dims : (1, 64, 3, 3)

An example of the contents of an edge

format = (from-layer, from-port, to-layer, to-port)

edge_id= (0, 2)
   {'connection': (0, 0, 2, 0)}

Ops plugins

Operators are implemented as plugins. You can develop an Op in Python and place the file in the op_plugins directory. The inference_engine of pyOpenVINO will search the Python source files in the op_plugins directory at the start time and register them as the Ops plugin.
The file name of the Ops plugin will be treated as the Op name, so it must match the layer type attribute field in the IR XML file.
The inference engine will call the compute() function of the plugin to perform the calculation. The compute() function is the only API between the inference engine and the plugin. The inference engine will collect the required input data and pass it to the compute() function. The input data is in the form of Python dict. ({port_num:data[, port_num:data[, ...]]})
The op needs to calculate the result from the input data and return it as a Python dict. ({port_num:result[, port_num:result[, ...]]})

Kernel implementation: NumPy version and Naive version

Not all, but some Ops have dual kernel implementation, a naive implementation (easy to read), and a NumPy version implementation (a bit faster).
The NumPy version might be x10+ faster than the naive version.
The kernel type can be specified with Executable_Network.kernel_type attribute. You can specify eitgher one of 'naive' (default) or 'numpy'. Please refer to the sample program test_pyopenvino.py for the details.

END

Owner
Yasunori Shimura
Yasunori Shimura
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

The-Emergence-of-Objectness This is the official released code for our paper, The Emergence of Objectness: Learning Zero-Shot Segmentation from Videos

44 Oct 08, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels.

The Face Synthetics dataset Face Synthetics dataset is a collection of diverse synthetic face images with ground truth labels. It was introduced in ou

Microsoft 608 Jan 02, 2023
Learning Energy-Based Models by Diffusion Recovery Likelihood

Learning Energy-Based Models by Diffusion Recovery Likelihood Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma Paper: https://arxiv.o

Ruiqi Gao 41 Nov 22, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Robot Servers and Server Manager software for robo-gym

robo-gym-server-modules Robot Servers and Server Manager software for robo-gym. For info on how to use this package please visit the robo-gym website

JR ROBOTICS 4 Aug 16, 2021
Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al.

nam-pytorch Unofficial PyTorch implementation of Neural Additive Models (NAM) by Agarwal, et al. [abs, pdf] Installation You can access nam-pytorch vi

Rishabh Anand 11 Mar 14, 2022
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
A list of all named GANs!

The GAN Zoo Every week, new GAN papers are coming out and it's hard to keep track of them all, not to mention the incredibly creative ways in which re

Avinash Hindupur 12.9k Jan 08, 2023
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022