Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

Overview

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set)


Description

The PyOpenVINO is a spin-off product from my deep learning algorithm study work. This project is aiming at neither practical performance nor rich functionalities. PyOpenVINO can load an OpenVINO IR model (.xml/.bin) and run it. The implementation is quite straightforward and naive. No Optimization technique is used. Thus, the code is easy to read and modify. Supported API is quite limited, but it mimics OpenVINO IE Python API. So, you can easily read and modify the sample code too.

  • Developed as a spin-off from my deep learning study work.
  • Very slow and limited functionality. Not a general DL inference engine.
  • Naive and straightforward code: (I hope) This is a good reference for learning deep-learning technology.
  • Extensible ops: Ops are implemented as plugins. You can easily add your ops as needed.

How to run

Steps 1 and 2 are optional since the converted MNIST IR model is provided.

  1. (Optional) Train a model and generate a 'saved_model' with TensorFlow
python mnist-tf-training.py

The trained model data will be created under ./mnist-savedmodel directory.

  1. (Optional) Convert TF saved_model into OpenVINO IR model
    Prerequisite: You need to have OpenVINO installed (Model Optimizer is required).
convert-model.bat

Converted IR model (.xml/.bin) will be generated in ./models directory.

  1. Run pyOpenVINO sample program
python test_pyopenvino.py

You'll see the output like this.

pyopenvino>python test_pyopenvino.py
inputs: [{'name': 'conv2d_input', 'type': 'Parameter', 'version': 'opset1', 'data': {'element_type': 'f32', 'shape': (1, 1, 28, 28)}, 'output': {0: {'precision': 'FP32', 'dims': (1, 1, 28, 28)}}}]
outputs: [{'name': 'Func/StatefulPartitionedCall/output/_11:0', 'type': 'Result', 'version': 'opset1', 'input': {0: {'precision': 'FP32', 'dims': (1, 10)}}}]
# node_name, time (sec)
conv2d_input Parameter, 0.0
conv2d_input/scale_copy Const, 0.0
StatefulPartitionedCall/sequential/conv2d/Conv2D Convolution, 0.11315417289733887
StatefulPartitionedCall/sequential/conv2d/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d/Relu ReLU, 0.0010142326354980469
StatefulPartitionedCall/sequential/max_pooling2d/MaxPool MaxPool, 0.020931482315063477
StatefulPartitionedCall/sequential/conv2d_1/Conv2D/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Conv2D Convolution, 0.04333162307739258
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/conv2d_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/conv2d_1/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/max_pooling2d_1/MaxPool MaxPool, 0.006029367446899414
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D/ReadVariableOp Const, 0.0010688304901123047
StatefulPartitionedCall/sequential/target_conv_layer/Conv2D Convolution, 0.004073381423950195
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose/value6071024 Const, 0.0
StatefulPartitionedCall/sequential/target_conv_layer/Relu/Transpose Transpose, 0.0
StatefulPartitionedCall/sequential/flatten/Const Const, 0.0
StatefulPartitionedCall/sequential/flatten/Reshape Reshape, 0.0
StatefulPartitionedCall/sequential/dense/MatMul/ReadVariableOp Const, 0.0010004043579101562
StatefulPartitionedCall/sequential/dense/MatMul MatMul, 0.0013704299926757812
StatefulPartitionedCall/sequential/dense/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense/Relu ReLU, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/MatMul MatMul, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/ReadVariableOp Const, 0.0
StatefulPartitionedCall/sequential/dense_1/BiasAdd/Add Add, 0.0
StatefulPartitionedCall/sequential/dense_1/Softmax SoftMax, 0.0009992122650146484
Func/StatefulPartitionedCall/output/_11:0 Result, 0.0
@TOTAL_TIME, 0.21120882034301758
0.21120882034301758 sec/inf
Raw result: {'Func/StatefulPartitionedCall/output/_11:0': array([[7.8985136e-07, 2.0382247e-08, 9.9999917e-01, 1.0367385e-10,
        1.0184062e-10, 1.6024957e-12, 2.0729640e-10, 1.6014919e-08,
        6.5354638e-10, 9.5946295e-14]], dtype=float32)}
Result: [2 0 1 7 8 6 3 4 5 9]
  1. Run Draw-and-Inter demo
python draw-and-infer.py

How to Operate

  • Left click to draw points.
  • Right click to clear the canvas.
    This demo program is using 'numpy' kernels for performance.
    draw-and-infer

A Littile Description of the Implementation

IR model internal representation

This inference engine uses networkx.DiGraph as the internal representation of the IR model. IR model will be translated into nodes and edges.
The nodes represent the ops, and it holds the attributes of the ops (e.g., strides, dilations, etc.).
The edges represent the connection between the nodes. The edges hold the port number for both ends.
The intermediate output from the nodes (feature maps) will be stored in the data attributes in the output port of the node (G.nodes[node_id_num]['output'][port_num]['data'] = feat_map)

An example of the contents (attributes) of a node

node id= 14
 name : StatefulPartitionedCall/sequential/target_conv_layer/Conv2D
 type : Convolution
 version : opset1
 data :
     auto_pad : valid
     dilations : 1, 1
     pads_begin : 0, 0
     pads_end : 0, 0
     strides : 1, 1
 input :
     0 :
         precision : FP32
         dims : (1, 64, 5, 5)
     1 :
         precision : FP32
         dims : (64, 64, 3, 3)
 output :
     2 :
         precision : FP32
         dims : (1, 64, 3, 3)

An example of the contents of an edge

format = (from-layer, from-port, to-layer, to-port)

edge_id= (0, 2)
   {'connection': (0, 0, 2, 0)}

Ops plugins

Operators are implemented as plugins. You can develop an Op in Python and place the file in the op_plugins directory. The inference_engine of pyOpenVINO will search the Python source files in the op_plugins directory at the start time and register them as the Ops plugin.
The file name of the Ops plugin will be treated as the Op name, so it must match the layer type attribute field in the IR XML file.
The inference engine will call the compute() function of the plugin to perform the calculation. The compute() function is the only API between the inference engine and the plugin. The inference engine will collect the required input data and pass it to the compute() function. The input data is in the form of Python dict. ({port_num:data[, port_num:data[, ...]]})
The op needs to calculate the result from the input data and return it as a Python dict. ({port_num:result[, port_num:result[, ...]]})

Kernel implementation: NumPy version and Naive version

Not all, but some Ops have dual kernel implementation, a naive implementation (easy to read), and a NumPy version implementation (a bit faster).
The NumPy version might be x10+ faster than the naive version.
The kernel type can be specified with Executable_Network.kernel_type attribute. You can specify eitgher one of 'naive' (default) or 'numpy'. Please refer to the sample program test_pyopenvino.py for the details.

END

Owner
Yasunori Shimura
Yasunori Shimura
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Crossover Learning for Fast Online Video Instance Segmentation (ICCV 2021)

TL;DR: CrossVIS (Crossover Learning for Fast Online Video Instance Segmentation) proposes a novel crossover learning paradigm to fully leverage rich c

Hust Visual Learning Team 79 Nov 25, 2022
unet for image segmentation

Implementation of deep learning framework -- Unet, using Keras The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Seg

zhixuhao 4.1k Dec 31, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
NHL 94 AI contests

nhl94-ai The end goals of this project is to: Train Models that play NHL 94 Support AI vs AI contests in NHL 94 Provide an improved AI opponent for NH

Mathieu Poliquin 2 Dec 06, 2021
FocusFace: Multi-task Contrastive Learning for Masked Face Recognition

FocusFace This is the official repository of "FocusFace: Multi-task Contrastive Learning for Masked Face Recognition" accepted at IEEE International C

Pedro Neto 21 Nov 17, 2022
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Viperdb - A tiny log-structured key-value database written in pure Python

ViperDB 🐍 ViperDB is a lightweight embedded key-value store written in pure Pyt

17 Oct 17, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022