Automate issue discovery for your projects against Lightning nightly and releases.

Overview

Logo

Automated Testing for Lightning EcoSystem Projects

CI testing Build Status pre-commit.ci status


Automate issue discovery for your projects against Lightning nightly and releases.
You get CPUs, Multi-GPUs testing for free, and Slack notification alerts if issues arise!

How do I add my own Project?

Pre-requisites

Here are pre-requisites for your project before adding to the Lightning EcoSystem CI:

  • Your project already includes some Python tests with PyTorch Lightning as a dependency
  • You'll be a contact/responsible person to resolve any issues that the CI finds in the future for your project

Adding your own project config

  1. First, fork this project (with CLI or in browser) to be able to create a new Pull Request, and work within a specific branch.
    gh repo fork PyTorchLightning/ecosystem-ci
    cd ecosystem-ci/
  2. Copy the template file in configs folder and call it <my_project_name>.yaml.
    cp configs/template.yaml configs/<my_project_name>.yaml
    
  3. At the minimum, modify the HTTPS variable to point to your repository. See Configuring my project for more options.
    target_repository:
      HTTPS: https://github.com/MyUsername/MyProject.git
    ...
    If your project tests multiple configurations or you'd like to test against multiple Lightning versions such as master and release branches, create a config file for each one of them. As an example, have a look at metrics master and metrics release CI files.
  4. Add your config filename to either/both the GitHub CPU CI file or the Azure GPU CI file.
    • For example, for the GitHub CPU CI file we append our config into the pytest parametrization:
      ...
      jobs:
        pytest:
          ...
              config:
                - "PyTorchLightning/metrics_pl-release.yaml"
                - "PyTorchLightning/transformers_pl-release.yaml"
                - "MyUsername/myproject-release.yaml"
              include:
                - {os: "ubuntu-20.04", python-version: "3.8", config: "PyTorchLightning/metrics_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "PyTorchLightning/transformers_pl-master.yaml"}
                - {os: "ubuntu-20.04", python-version: "3.9", config: "MyUsername/my_project-master.yaml"}
              exclude:
                - {os: "windows-2019", config: "PyTorchLightning/transformers_pl-release.yaml"}
      ...
    • For example, in the Azure GPU CI file file:
      ...
      jobs:
      - template: testing-template.yml
        parameters:
          configs:
          - "PyTorchLightning/metrics_pl-master.yaml"
          - "PyTorchLightning/metrics_pl-release.yaml"
          - "MyUsername/my_project-master.yaml"
  5. Add the responsible person(s) to CODEOWNERS for your organization folder or just the project.
    # MyProject
    /configs/Myusername/MyProject*    @Myusername
    
  6. Finally, create a draft PR to the repo!

(Optional). [wip] join our Slack channel to be notified if your project is breaking

Configuring my project

The config include a few different sections:

  • target_repository include your project
  • env (optional) define any environment variables required when running tests
  • dependencies listing all dependencies which are taken outside pip
  • testing defines specific pytest arguments and what folders shall be tested

All dependencies as well as the target repository is sharing the same template with the only required field HTTPS and all others are optional:

target_repository:
  HTTPS: https://github.com/PyTorchLightning/metrics.git
  username: my-nick  # Optional, used when checking out private/protected repo
  password: dont-tell-anyone # Optional, used when checking out private/protected repo
  token: authentication-token # Optional, overrides the user/pass when checking out private/protected repo
  checkout: master # Optional, checkout a particular branch or a tag
  install_extras: all # Refers to standard pip option to install some additional dependencies defined with setuptools, typically used as `<my-package>[<install_extras>]`.

# Optional, if any installation/tests require some env variables
env:
   MY_ENV_VARIABLE: "VAR"

copy_tests:
    - integrations # copied folder from the original repo into the running test directory
    # this is copied as we use the helpers inside integrations as regular python package
    - tests/__init__.py
    - tests/helpers

# Optional, additional pytest arguments and control which directory to test on
testing:
  dirs:
    - integrations
  pytest_args: --strict

Note: If you define some files as done above, and they are using internal-cross imports, you need to copy the __init__.py files from each particular package level.

The testing section provides access to the pytest run args and command.

testing:
  # by default pytest is called on all copied items/tests
  dirs:
    - integrations
  # OPTIONAL, additional pytest arguments
  pytest_args: --strict
Owner
Pytorch Lightning
Pytorch Lightning
CMSC320 - Introduction to Data Science - Fall 2021

CMSC320 - Introduction to Data Science - Fall 2021 Instructors: Elias Jonatan Gonzalez and José Manuel Calderón Trilla Lectures: MW 3:30-4:45 & 5:00-6

Introduction to Data Science 6 Sep 12, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Xi Dongbo 78 Nov 29, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Alphabetical Letter Recognition

BayeesNetworks-Image-Classification Alphabetical Letter Recognition In these demo we are using "Bayees Networks" Our database is composed by Learning

Mohammed Firass 4 Nov 30, 2021
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding (CVPR2022)

Incremental Transformer Structure Enhanced Image Inpainting with Masking Positional Encoding by Qiaole Dong*, Chenjie Cao*, Yanwei Fu Paper and Supple

Qiaole Dong 190 Dec 27, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
Ejemplo Algoritmo Viterbi - Example of a Viterbi algorithm applied to a hidden Markov model on DNA sequence

Ejemplo Algoritmo Viterbi Ejemplo de un algoritmo Viterbi aplicado a modelo ocul

Mateo Velásquez Molina 1 Jan 10, 2022