traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Overview

traiNNer

Python Version License DeepSource Issues PR's Accepted

traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

Here you will find: boilerplate code for training and testing computer vision (CV) models, different methods and strategies integrated in a single pipeline and modularity to add and remove components as needed, including new network architectures and templates for different training strategies. The code is under a constant state of change, so if you find an issue or bug please open a issue, a discussion or write in one of the Discord channels for help.

Different from other repositories, here the focus is not only on repeating previous papers' results, but to enable more people to train their own models more easily, using their own custom datasets, as well as integrating new ideas to increase the performance of the models. For these reasons, a lot of the code is made in order to automatically take care of fixing potential issues, whenever possible.

Details of the currently supported architectures can be found here.

For a changelog and general list of features of this repository, check here.

Table of Contents

  1. Dependencies
  2. Codes
  3. Usage
  4. Pretrained models
  5. Datasets
  6. How to help

Dependencies

  • Python 3 (Recommend to use Anaconda)
  • PyTorch >= 0.4.0. PyTorch >= 1.7.0 required to enable certain features (SWA, AMP, others), as well as torchvision.
  • NVIDIA GPU + CUDA
  • Python packages: pip install numpy opencv-python
  • JSON files can be used for the configuration option files, but in order to use YAML, the PyYAML python package is also a dependency: pip install PyYAML

Optional Dependencies

Codes

This repository is a full framework for training different kinds of networks, with multiple enhancements and options. In ./codes you will find a more detailed explaination of the code framework ).

You will also find:

  1. Some useful scripts. More details in ./codes/scripts.
  2. Evaluation codes, e.g., PSNR/SSIM metric.

Additionally, it is complemented by other repositories like DLIP, that can be used in order to extract estimated kernels and noise patches from real images, using a modified KernelGAN and patches extraction code. Detailed instructions about how to use the estimated kernels are available here

Usage

Training

Data and model preparation

In order to train your own models, you will need to create a dataset consisting of images, and prepare these images, both considering IO constrains, as well as the task the model should target. Detailed data preparation can be seen in codes/data.

Pretrained models that can be used for fine-tuning are available.

Detailed instructions on how to train are also available.

Augmentations strategies for training real-world models (blind SR) like Real-SR, BSRGAN and Real-ESRGAN are provided via presets that define the blur, resizing and noise configurations, but many more augmentations are available to define custom training strategies.

How to Test

For simple testing

The recommended way to get started with some of the models produced by the training codes available in this repository is by getting the pretrained models to be tested and run them in the companion repository iNNfer, with the purpose of model inference.

Additionally, you can also use a GUI (for ESRGAN models, for video) or a smaller repo for inference (for ESRGAN, for video).

If you are interested in obtaining results that can automatically return evaluation metrics, it is also possible to do inference of batches of images and some additional options with the instructions in how to test.

Pretrained models

The most recent community pretrained models can be found in the Wiki, Discord channels (game upscale and animation upscale) and nmkd's models.

For more details about the original and experimental pretrained models, please see pretrained models.

You can put the downloaded models in the default experiments/pretrained_models directory and use them in the options files with the corresponding network architectures.

Model interpolation

Models that were trained using the same pretrained model or are derivates of the same pretrained model are able to be interpolated to combine the properties of both. The original author demostrated this by interpolating the PSNR pretrained model (which is not perceptually good, but results in smooth images) with the ESRGAN resulting models that have more details but sometimes is excessive to control a balance in the resulting images, instead of interpolating the resulting images from both models, giving much better results.

The capabilities of linearly interpolating models are also explored in "DNI": Deep Network Interpolation for Continuous Imagery Effect Transition (CVPR19) with very interesting results and examples. The script for interpolation can be found in the net_interp.py file. This is an alternative to create new models without additional training and also to create pretrained models for easier fine tuning. Below is an example of interpolating between a PSNR-oriented and a perceptual ESRGAN model (first row), and examples of interpolating CycleGAN style transfer models.

More details and explanations of interpolation can be found here in the Wiki.

Datasets

Many datasets are publicly available and used to train models in a way that can be benchmarked and compared with other models. You are also able to create your own datasets with your own images.

Any dataset can be augmented to expose the model to information that might not be available in the images, such a noise and blur. For this reason, a data augmentation pipeline has been added to the options in this repository. It is also possible to add other types of augmentations, such as Batch Augmentations to apply them to minibatches instead of single images. Lastly, if your dataset is small, you can make use of Differential Augmentations to allow the discriminator to extract more information from the available images and train better models. More information can be found in the augmentations document.

How to help

There are multiple ways to help this project. The first one is by using it and trying to train your own models. You can open an issue if you find any bugs or start a discussion if you have ideas, questions or would like to showcase your results.

If you would like to contribute in the form of adding or fixing code, you can do so by cloning this repo and creating a PR. Ideally, it's better for PR to be precise and not changing many parts of the code at the same time, so it can be reviewed and tested. If possible, open an issue or discussion prior to creating the PR and we can talk about any ideas.

You can also join the discord servers and share results and questions with other users.

Lastly, after it has been suggested many times before, now there are options to donate to show your support to the project and help stir it in directions that will make it even more useful. Below you will find those options that were suggested.

Patreon

Bitcoin Address: 1JyWsAu7aVz5ZeQHsWCBmRuScjNhCEJuVL

Ethereum Address: 0xa26AAb3367D34457401Af3A5A0304d6CbE6529A2


Additional Help

If you have any questions, we have a couple of discord servers (game upscale and animation upscale) where you can ask them and a Wiki with more information.


Acknowledgement

Code architecture is originally inspired by pytorch-cyclegan and the first version of BasicSR.

Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan NOTE: This documentation describes a BETA release of PyStan 3. PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is

Stan 229 Dec 29, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Employee-Managment - Company employee registration software in the face recognition system

Employee-Managment Company employee registration software in the face recognitio

Alireza Kiaeipour 7 Jul 10, 2022
Python port of R's Comprehensive Dynamic Time Warp algorithm package

Welcome to the dtw-python package Comprehensive implementation of Dynamic Time Warping algorithms. DTW is a family of algorithms which compute the loc

Dynamic Time Warping algorithms 154 Dec 26, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
Feature board for ERPNext

ERPNext Feature Board Feature board for ERPNext Development Prerequisites k3d kubectl helm bench Install K3d Cluster # export K3D_FIX_CGROUPV2=1 # use

Revant Nandgaonkar 16 Nov 09, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022