Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Overview

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely, CVPR 2020

This release contains code for predicting incident illumination at any 3D location within a scene. The algorithm takes a narrow-baseline stereo pair of RGB images as input, and predicts a multiscale RGBA lighting volume. Spatially-varying lighting within the volume can then be computed by standard volume rendering.

Running a pretrained model

interiornet_test.py contains an example script for running a pretrained model on the test set (formatted as .npz files). Please download and extract the pretrained model and testing examples files, and then include the corresponding file/directory names as command line flags when running interiornet_test.py.

Example usage (edit paths to match your directory structure): python -m lighthouse.interiornet_test --checkpoint_dir="lighthouse/model/" --data_dir="lighthouse/testset/" --output_dir="lighthouse/output/"

Training

Please refer to the train.py for code to use for training your own model.

This model was trained using the InteriorNet dataset. It may be helpful to read data_loader.py to get an idea of how we organized the InteriorNet dataset for training.

To train with the perceptual loss based on VGG features (as done in the paper), please download the imagenet-vgg-verydeep-19.mat pretrained VGG model, and include the corresponding path as a command line flag when running train.py.

Example usage (edit paths to match your directory structure): python -m lighthouse.train --vgg_model_file="lighthouse/model/imagenet-vgg-verydeep-19.mat" --load_dir="" --data_dir="lighthouse/data/InteriorNet/" --experiment_dir=lighthouse/training/

Extra

This model is quite memory-hungry, and we used a NVIDIA Tesla V100 GPU for training and testing with a single example per minibatch. You may run into memory constraints when training on a GPU with less than 16 GB memory or testing on a GPU with less than 12 GB memory. If you wish to train a model on a GPU with <16 GB memory, you may want to try removing the finest volume in the multiscale representation (see the model parameters in train.py).

If you find this code helpful, please cite our paper: @article{Srinivasan2020, author = {Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely}, title = {Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination}, journal = {CVPR}, year = {2020}, }

Owner
Pratul Srinivasan
Research Scientist at Google Research. PhD from UC Berkeley.
Pratul Srinivasan
TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels.

AutoDSP TLDR; Train custom adaptive filter optimizers without hand tuning or extra labels. About Adaptive filtering algorithms are commonplace in sign

Jonah Casebeer 48 Sep 19, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Pytorch implementation of NeurIPS 2021 paper: Geometry Processing with Neural Fields.

Geometry Processing with Neural Fields Pytorch implementation for the NeurIPS 2021 paper: Geometry Processing with Neural Fields Guandao Yang, Serge B

Guandao Yang 162 Dec 16, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Yolov5-lite - Minimal PyTorch implementation of YOLOv5

Yolov5-Lite: Minimal YOLOv5 + Deep Sort Overview This repo is a shortened versio

Kadir Nar 57 Nov 28, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
MakeItTalk: Speaker-Aware Talking-Head Animation

MakeItTalk: Speaker-Aware Talking-Head Animation This is the code repository implementing the paper: MakeItTalk: Speaker-Aware Talking-Head Animation

Adobe Research 285 Jan 08, 2023
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Author: Wenhao Yu ([email protected]). ACL 2022. Commonsense Reasoning on Knowledge Graph for Text Generation

Diversifying Commonsense Reasoning Generation on Knowledge Graph Introduction -- This is the pytorch implementation of our ACL 2022 paper "Diversifyin

DM2 Lab @ ND 61 Dec 30, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
An implementation of the 1. Parallel, 2. Streaming, 3. Randomized SVD using MPI4Py

PYPARSVD This implementation allows for a singular value decomposition which is: Distributed using MPI4Py Streaming - data can be shown in batches to

Romit Maulik 44 Dec 31, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022