Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Overview

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely, CVPR 2020

This release contains code for predicting incident illumination at any 3D location within a scene. The algorithm takes a narrow-baseline stereo pair of RGB images as input, and predicts a multiscale RGBA lighting volume. Spatially-varying lighting within the volume can then be computed by standard volume rendering.

Running a pretrained model

interiornet_test.py contains an example script for running a pretrained model on the test set (formatted as .npz files). Please download and extract the pretrained model and testing examples files, and then include the corresponding file/directory names as command line flags when running interiornet_test.py.

Example usage (edit paths to match your directory structure): python -m lighthouse.interiornet_test --checkpoint_dir="lighthouse/model/" --data_dir="lighthouse/testset/" --output_dir="lighthouse/output/"

Training

Please refer to the train.py for code to use for training your own model.

This model was trained using the InteriorNet dataset. It may be helpful to read data_loader.py to get an idea of how we organized the InteriorNet dataset for training.

To train with the perceptual loss based on VGG features (as done in the paper), please download the imagenet-vgg-verydeep-19.mat pretrained VGG model, and include the corresponding path as a command line flag when running train.py.

Example usage (edit paths to match your directory structure): python -m lighthouse.train --vgg_model_file="lighthouse/model/imagenet-vgg-verydeep-19.mat" --load_dir="" --data_dir="lighthouse/data/InteriorNet/" --experiment_dir=lighthouse/training/

Extra

This model is quite memory-hungry, and we used a NVIDIA Tesla V100 GPU for training and testing with a single example per minibatch. You may run into memory constraints when training on a GPU with less than 16 GB memory or testing on a GPU with less than 12 GB memory. If you wish to train a model on a GPU with <16 GB memory, you may want to try removing the finest volume in the multiscale representation (see the model parameters in train.py).

If you find this code helpful, please cite our paper: @article{Srinivasan2020, author = {Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron, Richard Tucker, Noah Snavely}, title = {Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination}, journal = {CVPR}, year = {2020}, }

Owner
Pratul Srinivasan
Research Scientist at Google Research. PhD from UC Berkeley.
Pratul Srinivasan
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Implement face detection, and age and gender classification, and emotion classification.

YOLO Keras Face Detection Implement Face detection, and Age and Gender Classification, and Emotion Classification. (image from wider face dataset) Ove

Chloe 10 Nov 14, 2022
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
Check out the StyleGAN repo and place it in the same directory hierarchy as the present repo

Variational Model Inversion Attacks Kuan-Chieh Wang, Yan Fu, Ke Li, Ashish Khisti, Richard Zemel, Alireza Makhzani Most commands are in run_scripts. W

Jackson Wang 15 Dec 26, 2022
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
This is the official repository of XVFI (eXtreme Video Frame Interpolation)

XVFI This is the official repository of XVFI (eXtreme Video Frame Interpolation), https://arxiv.org/abs/2103.16206 Last Update: 20210607 We provide th

Jihyong Oh 195 Dec 29, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Code for LIGA-Stereo Detector, ICCV'21

LIGA-Stereo Introduction This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based

Xiaoyang Guo 75 Dec 09, 2022