CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

Overview

CMUA-Watermark

The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is based on disrupting-deepfakes .

Contact us with [email protected], [email protected].

We will release our code soon (no later than December 31, 2021).

Introduction

CMUA-Watermark is a cross-model universal adversarial watermark that can combat multiple deepfake models while protecting a myriad of facial images. With the proposed perturbation fusion strategies and automatic step size tuning, CMUA-Watermark achieves excellent protection capabilities for facial images against four face modification models (StarGAN, AttGAN, AGGAN, HiSD).

Figure 1. Illustration of our CMUA-Watermark. Once the CMUA-watermark has been generated, we can add it directly to any facial image to generate a protected image that is visually identical to the original image but can distort outputs of deepfake models.

Figure 2. The quantitative results of CMUA-Watermark.

Usage

Installation

  1. Prepare the Environment

  2. Prepare the Datasets

    • download the CelebA datasets:
      cd stargan
      bash download.sh celeba
      
      make sure your floder (e.g. celeba_data) has img_align_celeba and list_attr_celeba.txt.
    • create the link
      ln -s your_path_to_celeba_data ./data
      
  3. Prepare the Model Weights

    For your convenient usage, we prepare the weights download link in PKU disk: https://disk.pku.edu.cn:443/link/D04A3ED9D22694D81924109D0E4EACA8.

    You can first download the weights. Then move the weight files to different floders of different models:

    cd CMUA-Watermark
    # make sure **weights** in this path.
    # If the paths bellow are not exist, please create the path (e.g., mkdir -p ./stargan/stargan_celeba_256/models).
    mv ./weights/stargan/* ./stargan/stargan_celeba_256/models
    mv ./weights/AttentionGAN/* ./AttentionGAN/AttentionGAN_v1_multi/checkpoints/celeba_256_pretrained
    mv ./weights/HiSD/* ./HiSD
    mv ./weights/AttGAN/* ./AttGAN/output/256_shortcut1_inject0_none/checkpoint

    ATTENTION! The copyright of these weight files belongs to their owners. You needs authorization for commerce, please contact to their owners!

  4. Prepare the CMUA-Watermark (only for inference)

    We prepare a CMUA-Watermark for you to test its performance: https://disk.pku.edu.cn:443/link/4FDBB772471746EC0DC397B520005D3E.

Inference

# inference in CelebA datasets with 20 images (you can change the test number in evaluate.py)
python3 universal_attack_inference.py

# inference with your own image (one image)
python3 universal_attack_inference_one_image.py ./demo_input.png # you can change the path with your own image

Training (attacking multiple deepfake models)

STEP 1 Search Step Size with TPE ( powered by Microsoft NNI )

If your want to try your onw idea, you may need to modify the nni_config.yaml and search_space.json. These two files are the configs of NNI-based search. Thanks to the NNI, you can obtain the visualized results in your browser.

nnictl create --config ./nni_config.yaml 

STEP 2 Using the Step Sizes to train your onw CMUA-Watermark!

Once you get the best step sizes, you need to modify the default step sizes in setting.json. It must be easy for a smart person like you~

After that,

python universal_attack.py

Citation

If you use our code / perturbation, please consider to cite our paper: CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes.

@misc{huang2021cmuawatermark,
      title={CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes}, 
      author={Hao Huang and Yongtao Wang and Zhaoyu Chen and Yuze Zhang and Yuheng Li and Zhi Tang and Wei Chu and Jingdong Chen and Weisi Lin and Kai-Kuang Ma},
      year={2021},
      eprint={2105.10872},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

The project is only free for academic research purposes, but needs authorization for commerce. For commerce permission, please contact [email protected].

Thanks

We use code from StarGAN, GANimation, pix2pixHD, CycleGAN, advertorch, disrupting-deepfakes and nni. These are all great repositories and we encourage you to check them out and cite them in your work.

Owner
Visual Data Interpreting and Generation Lab
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation

deep-hist PyTorch implementation of Histogram Layers from DeepHist: Differentiable Joint and Color Histogram Layers for Image-to-Image Translation PyT

Winfried Lötzsch 10 Dec 06, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
Text Summarization - WCN — Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN — Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
A Broad Study on the Transferability of Visual Representations with Contrastive Learning

A Broad Study on the Transferability of Visual Representations with Contrastive Learning This repository contains code for the paper: A Broad Study on

Ashraful Islam 29 Nov 09, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

The code for our paper "NSP-BERT: A Prompt-based Zero-Shot Learner Through an Original Pre-training Task —— Next Sentence Prediction"

Sun Yi 201 Nov 21, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Python Multi-Agent Reinforcement Learning framework

- Please pay attention to the version of SC2 you are using for your experiments. - Performance is *not* always comparable between versions. - The re

whirl 1.3k Jan 05, 2023
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Models, datasets and tools for Facial keypoints detection

Template for Data Science Project This repo aims to give a robust starting point to any Data Science related project. It contains readymade tools setu

girafe.ai 1 Feb 11, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022