[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

Overview

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing

Python 3.7 pytorch 1.1.0 TensorFlow 1.12.2 sklearn 0.21.2

image Figure: High-quality facial attributes editing results with InterFaceGAN.

In this repository, we propose an approach, termed as InterFaceGAN, for semantic face editing. Specifically, InterFaceGAN is capable of turning an unconditionally trained face synthesis model to controllable GAN by interpreting the very first latent space and finding the hidden semantic subspaces.

[Paper (CVPR)] [Paper (TPAMI)] [Project Page] [Demo] [Colab]

How to Use

Pick up a model, pick up a boundary, pick up a latent code, and then EDIT!

# Before running the following code, please first download
# the pre-trained ProgressiveGAN model on CelebA-HQ dataset,
# and then place it under the folder ".models/pretrain/".
LATENT_CODE_NUM=10
python edit.py \
    -m pggan_celebahq \
    -b boundaries/pggan_celebahq_smile_boundary.npy \
    -n "$LATENT_CODE_NUM" \
    -o results/pggan_celebahq_smile_editing

GAN Models Used (Prior Work)

Before going into details, we would like to first introduce the two state-of-the-art GAN models used in this work, which are ProgressiveGAN (Karras el al., ICLR 2018) and StyleGAN (Karras et al., CVPR 2019). These two models achieve high-quality face synthesis by learning unconditional GANs. For more details about these two models, please refer to the original papers, as well as the official implementations.

ProgressiveGAN: [Paper] [Code]

StyleGAN: [Paper] [Code]

Code Instruction

Generative Models

A GAN-based generative model basically maps the latent codes (commonly sampled from high-dimensional latent space, such as standart normal distribution) to photo-realistic images. Accordingly, a base class for generator, called BaseGenerator, is defined in models/base_generator.py. Basically, it should contains following member functions:

  • build(): Build a pytorch module.
  • load(): Load pre-trained weights.
  • convert_tf_model() (Optional): Convert pre-trained weights from tensorflow model.
  • sample(): Randomly sample latent codes. This function should specify what kind of distribution the latent code is subject to.
  • preprocess(): Function to preprocess the latent codes before feeding it into the generator.
  • synthesize(): Run the model to get synthesized results (or any other intermediate outputs).
  • postprocess(): Function to postprocess the outputs from generator to convert them to images.

We have already provided following models in this repository:

  • ProgressiveGAN:
    • A clone of official tensorflow implementation: models/pggan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/pggan_generator_model.py.
    • Generator class derived from BaseGenerator: models/pggan_generator.py.
    • Please download the official released model trained on CelebA-HQ dataset and place it in folder models/pretrain/.
  • StyleGAN:
    • A clone of official tensorflow implementation: models/stylegan_tf_official/. This clone is only used for converting tensorflow pre-trained weights to pytorch ones. This conversion will be done automitally when the model is used for the first time. After that, tensorflow version is not used anymore.
    • Pytorch implementation of official model (just for inference): models/stylegan_generator_model.py.
    • Generator class derived from BaseGenerator: models/stylegan_generator.py.
    • Please download the official released models trained on CelebA-HQ dataset and FF-HQ dataset and place them in folder models/pretrain/.
    • Support synthesizing images from $\mathcal{Z}$ space, $\mathcal{W}$ space, and extended $\mathcal{W}$ space (18x512).
    • Set truncation trick and noise randomization trick in models/model_settings.py. Among them, STYLEGAN_RANDOMIZE_NOISE is highly recommended to set as False. STYLEGAN_TRUNCATION_PSI = 0.7 and STYLEGAN_TRUNCATION_LAYERS = 8 are inherited from official implementation. Users can customize their own models. NOTE: These three settings will NOT affect the pre-trained weights.
  • Customized model:
    • Users can do experiments with their own models by easily deriving new class from BaseGenerator.
    • Before used, new model should be first registered in MODEL_POOL in file models/model_settings.py.

Utility Functions

We provide following utility functions in utils/manipulator.py to make InterFaceGAN much easier to use.

  • train_boundary(): This function can be used for boundary searching. It takes pre-prepared latent codes and the corresponding attributes scores as inputs, and then outputs the normal direction of the separation boundary. Basically, this goal is achieved by training a linear SVM. The returned vector can be further used for semantic face editing.
  • project_boundary(): This function can be used for conditional manipulation. It takes a primal direction and other conditional directions as inputs, and then outputs a new normalized direction. Moving latent code along this new direction will manipulate the primal attribute yet barely affect the conditioned attributes. NOTE: For now, at most two conditions are supported.
  • linear_interpolate(): This function can be used for semantic face editing. It takes a latent code and the normal direction of a particular semantic boundary as inputs, and then outputs a collection of manipulated latent codes with linear interpolation. These interpolation can be used to see how the synthesis will vary if moving the latent code along the given direction.

Tools

  • generate_data.py: This script can be used for data preparation. It will generate a collection of syntheses (images are saved for further attribute prediction) as well as save the input latent codes.

  • train_boundary.py: This script can be used for boundary searching.

  • edit.py: This script can be usd for semantic face editing.

Usage

We take ProgressiveGAN model trained on CelebA-HQ dataset as an instance.

Prepare data

NUM=10000
python generate_data.py -m pggan_celebahq -o data/pggan_celebahq -n "$NUM"

Predict Attribute Score

Get your own predictor for attribute $ATTRIBUTE_NAME, evaluate on all generated images, and save the inference results as data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy. NOTE: The save results should be with shape ($NUM, 1).

Search Semantic Boundary

python train_boundary.py \
    -o boundaries/pggan_celebahq_"$ATTRIBUTE_NAME" \
    -c data/pggan_celebahq/z.npy \
    -s data/pggan_celebahq/"$ATTRIBUTE_NAME"_scores.npy

Compute Conditional Boundary (Optional)

This step is optional. It depends on whether conditional manipulation is needed. Users can use function project_boundary() in file utils/manipulator.py to compute the projected direction.

Boundaries Description

We provided following boundaries in folder boundaries/. The boundaries can be more accurate if stronger attribute predictor is used.

  • ProgressiveGAN model trained on CelebA-HQ dataset:

    • Single boundary:
      • pggan_celebahq_pose_boundary.npy: Pose.
      • pggan_celebahq_smile_boundary.npy: Smile (expression).
      • pggan_celebahq_age_boundary.npy: Age.
      • pggan_celebahq_gender_boundary.npy: Gender.
      • pggan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
      • pggan_celebahq_quality_boundary.npy: Image quality.
    • Conditional boundary:
      • pggan_celebahq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • pggan_celebahq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • pggan_celebahq_age_c_gender_eyeglasses_boundary.npy: Age (conditioned on gender and eyeglasses).
      • pggan_celebahq_gender_c_age_boundary.npy: Gender (conditioned on age).
      • pggan_celebahq_gender_c_eyeglasses_boundary.npy: Gender (conditioned on eyeglasses).
      • pggan_celebahq_gender_c_age_eyeglasses_boundary.npy: Gender (conditioned on age and eyeglasses).
      • pggan_celebahq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • pggan_celebahq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
      • pggan_celebahq_eyeglasses_c_age_gender_boundary.npy: Eyeglasses (conditioned on age and gender).
  • StyleGAN model trained on CelebA-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_celebahq_pose_boundary.npy: Pose.
      • stylegan_celebahq_smile_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_boundary.npy: Age.
      • stylegan_celebahq_gender_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_boundary.npy: Eyeglasses.
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_celebahq_pose_w_boundary.npy: Pose.
      • stylegan_celebahq_smile_w_boundary.npy: Smile (expression).
      • stylegan_celebahq_age_w_boundary.npy: Age.
      • stylegan_celebahq_gender_w_boundary.npy: Gender.
      • stylegan_celebahq_eyeglasses_w_boundary.npy: Eyeglasses.
  • StyleGAN model trained on FF-HQ dataset:

    • Single boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_pose_boundary.npy: Pose.
      • stylegan_ffhq_smile_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_boundary.npy: Age.
      • stylegan_ffhq_gender_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_boundary.npy: Eyeglasses.
    • Conditional boundary in $\mathcal{Z}$ space:
      • stylegan_ffhq_age_c_gender_boundary.npy: Age (conditioned on gender).
      • stylegan_ffhq_age_c_eyeglasses_boundary.npy: Age (conditioned on eyeglasses).
      • stylegan_ffhq_eyeglasses_c_age_boundary.npy: Eyeglasses (conditioned on age).
      • stylegan_ffhq_eyeglasses_c_gender_boundary.npy: Eyeglasses (conditioned on gender).
    • Single boundary in $\mathcal{W}$ space:
      • stylegan_ffhq_pose_w_boundary.npy: Pose.
      • stylegan_ffhq_smile_w_boundary.npy: Smile (expression).
      • stylegan_ffhq_age_w_boundary.npy: Age.
      • stylegan_ffhq_gender_w_boundary.npy: Gender.
      • stylegan_ffhq_eyeglasses_w_boundary.npy: Eyeglasses.

BibTeX

@inproceedings{shen2020interpreting,
  title     = {Interpreting the Latent Space of GANs for Semantic Face Editing},
  author    = {Shen, Yujun and Gu, Jinjin and Tang, Xiaoou and Zhou, Bolei},
  booktitle = {CVPR},
  year      = {2020}
}
@article{shen2020interfacegan,
  title   = {InterFaceGAN: Interpreting the Disentangled Face Representation Learned by GANs},
  author  = {Shen, Yujun and Yang, Ceyuan and Tang, Xiaoou and Zhou, Bolei},
  journal = {TPAMI},
  year    = {2020}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
X-VLM: Multi-Grained Vision Language Pre-Training

X-VLM: learning multi-grained vision language alignments Multi-Grained Vision Language Pre-Training: Aligning Texts with Visual Concepts. Yan Zeng, Xi

Yan Zeng 286 Dec 23, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous Event-Based Data"

A Differentiable Recurrent Surface for Asynchronous Event-Based Data Code for the ECCV2020 paper "A Differentiable Recurrent Surface for Asynchronous

Marco Cannici 21 Oct 05, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
Multiple-criteria decision-making (MCDM) with Electre, Promethee, Weighted Sum and Pareto

EasyMCDM - Quick Installation methods Install with PyPI Once you have created your Python environment (Python 3.6+) you can simply type: pip3 install

Labrak Yanis 6 Nov 22, 2022
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Dilated Convolution with Learnable Spacings PyTorch

Dilated-Convolution-with-Learnable-Spacings-PyTorch Ismail Khalfaoui Hassani Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a no

15 Dec 09, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023