PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Overview

Quasi-Recurrent Neural Network (QRNN) for PyTorch

Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py example.

This repository contains a PyTorch implementation of Salesforce Research's Quasi-Recurrent Neural Networks paper.

The QRNN provides similar accuracy to the LSTM but can be betwen 2 and 17 times faster than the highly optimized NVIDIA cuDNN LSTM implementation depending on the use case.

To install, simply run:

pip install cupy pynvrtc git+https://github.com/salesforce/pytorch-qrnn

If you use this code or our results in your research, please cite:

@article{bradbury2016quasi,
  title={{Quasi-Recurrent Neural Networks}},
  author={Bradbury, James and Merity, Stephen and Xiong, Caiming and Socher, Richard},
  journal={International Conference on Learning Representations (ICLR 2017)},
  year={2017}
}

Software Requirements

This codebase requires Python 3, PyTorch, pynvrtc (NVIDIA's Python Bindings to NVRTC), and CuPy. While the codebase contains a CPU implementation of the QRNN, the GPU QRNN implementation is used by default if possible. Requirements are provided in requirements.txt.

Example Usage

We've updated the previously released Salesforce Research AWD-LSTM language modeling codebase to support use of the AWD-QRNN. With the same number of parameters as the LSTM and less well tuned hyper parameters, the QRNN model trains over twice as quickly and achieves nearly equivalent state-of-the-art language modeling results. For full details, refer to the AWD-LSTM-LM repository.

Usage

The QRNN API is meant to be drop-in compatible with the LSTM for many standard use cases. As such, the easiest thing to do is replace any GRU or LSTM module with the QRNN.

Note: bidirectional QRNN is not yet supported though will be in the near future.

import torch
from torchqrnn import QRNN

seq_len, batch_size, hidden_size = 7, 20, 256
size = (seq_len, batch_size, hidden_size)
X = torch.autograd.Variable(torch.rand(size), requires_grad=True).cuda()

qrnn = QRNN(hidden_size, hidden_size, num_layers=2, dropout=0.4)
qrnn.cuda()
output, hidden = qrnn(X)

print(output.size(), hidden.size())

The full documentation for the QRNN is listed below:

QRNN(input_size, hidden_size, num_layers, dropout=0):
    Applies a multiple layer Quasi-Recurrent Neural Network (QRNN) to an input sequence.

    Args:
        input_size: The number of expected features in the input x.
        hidden_size: The number of features in the hidden state h. If not specified, the input size is used.
        num_layers: The number of QRNN layers to produce.
        layers: List of preconstructed QRNN layers to use for the QRNN module (optional).
        save_prev_x: Whether to store previous inputs for use in future convolutional windows (i.e. for a continuing sequence such as in language modeling). If true, you must call reset to remove cached previous values of x. Default: False.
        window: Defines the size of the convolutional window (how many previous tokens to look when computing the QRNN values). Supports 1 and 2. Default: 1.
        zoneout: Whether to apply zoneout (i.e. failing to update elements in the hidden state) to the hidden state updates. Default: 0.
        output_gate: If True, performs QRNN-fo (applying an output gate to the output). If False, performs QRNN-f. Default: True.
        use_cuda: If True, uses fast custom CUDA kernel. If False, uses naive for loop. Default: True.

    Inputs: X, hidden
        - X (seq_len, batch, input_size): tensor containing the features of the input sequence.
        - hidden (layers, batch, hidden_size): tensor containing the initial hidden state for the QRNN.

    Outputs: output, h_n
        - output (seq_len, batch, hidden_size): tensor containing the output of the QRNN for each timestep.
        - h_n (layers, batch, hidden_size): tensor containing the hidden state for t=seq_len

The included QRNN layer supports convolutional windows of size 1 or 2 but will be extended in the future to support arbitrary convolutions.

If you are using convolutional windows of size 2 (i.e. looking at the inputs from two previous timesteps to compute the input) and want to run over a long sequence in batches, such as when using BPTT, you can set save_prev_x=True and call reset when you wish to reset the cached previous inputs.

If you want flexibility in the definition of each QRNN layer, you can construct individual QRNNLayer modules and pass them to the QRNN module using the layer argument.

Speed

Speeds are between 2 and 17 times faster than NVIDIA's cuDNN LSTM, with the difference as a result of varying batch size and sequence length. The largest gains are for small batch sizes or long sequence lengths, both highlighting the LSTMs parallelization difficulty due to forced sequentiality. For full information, refer to the Quasi-Recurrent Neural Networks paper.

Figure 4 from QRNN paper

Pictured above is Figure 4 from the QRNN paper:
Left: Training speed for two-layer 640-unit PTB LM on a batch of 20 examples of 105 timesteps. “RNN” and “softmax” include the forward and backward times, while “optimization overhead” includes gradient clipping, L2 regularization, and SGD computations.
Right: Inference speed advantage of a 320-unit QRNN layer alone over an equal-sized cuDNN LSTM layer for data with the given batch size and sequence length. Training results are similar.

Extending the QRNN speed advantage to other recurrent architectures with ForgetMult

The QRNN architecture's speed advantage comes from two primary sources: the ability to batch all computations into a few large matrix multiplications and the use of a fast element-wise recurrence function. This recurrence function, named ForgetMult, is general and can be used in other scenarios. The ForgetMult takes two arguments - the candidate input x and forget gates f - and computes h = f * x + (1 - f) * hm1 where hm1 is the previous hidden state output.

The QRNN class is a thin wrapper around this that performs the large matrix multiplications for the candidate x, the forget gates f, and the output gates o. Any other operation which requires recurrence and can have precomputed values for the candidate x and forget gates f can use this fast form of recurrence.

Example usage of the ForgetMult module: output = ForgetMult()(f, x, hidden).

    ForgetMult computes a simple recurrent equation:
    h_t = f_t * x_t + (1 - f_t) * h_{t-1}

    This equation is equivalent to dynamic weighted averaging.

    Inputs: X, hidden
        - X (seq_len, batch, input_size): tensor containing the features of the input sequence.
        - F (seq_len, batch, input_size): tensor containing the forget gate values, assumed in range [0, 1].
        - hidden_init (batch, input_size): tensor containing the initial hidden state for the recurrence (h_{t-1}).
        - cuda: If True, use the fast element-wise CUDA kernel for recurrence. If False, uses naive for loop. Default: True.

Want to help out?

First, thanks! :)

Open tasks that are interesting:

  • Modify the ForgetMult CUDA kernel to produce a BackwardForgetMult. This will enable a bidirectional QRNN. The input should be the same - f and x - but the kernel should walk backwards through the inputs.
  • Bidirectional QRNN support (requires the modification above)
  • Support PyTorch's PackedSequence such that variable length sequences are correctly masked
  • Show how to use the underlying fast recurrence operator ForgetMult in other generic ways
Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available actions

Agar.io_Q-Learning_AI An experiment on the performance of homemade Q-learning AIs in Agar.io depending on their state representation and available act

1 Jun 09, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
A large dataset of 100k Google Satellite and matching Map images, resembling pix2pix's Google Maps dataset.

Larger Google Sat2Map dataset This dataset extends the aerial ⟷ Maps dataset used in pix2pix (Isola et al., CVPR17). The provide script download_sat2m

34 Dec 28, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechanism for Generalized Face Presentation Attack Detection

LMFD-PAD Note This is the official repository of the paper: LMFD-PAD: Learnable Multi-level Frequency Decomposition and Hierarchical Attention Mechani

28 Dec 02, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022