Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Overview

Seamless Manga Inpainting with Semantics Awareness

[SIGGRAPH 2021](To appear) | Project Website | BibTex

Introduction:

Manga inpainting fills up the disoccluded pixels due to the removal of dialogue balloons or ``sound effect'' text. This process is long needed by the industry for the language localization and the conversion to animated manga. It is mostly done manually, as existing methods (mostly for natural image inpainting) cannot produce satisfying results. We present the first manga inpainting method, a deep learning model, that generates high-quality results. Instead of direct inpainting, we propose to separate the complicated inpainting into two major phases, semantic inpainting and appearance synthesis. This separation eases both the feature understanding and hence the training of the learning model. A key idea is to disentangle the structural line and screentone, that helps the network to better distinguish the structural line and the screentone features for semantic interpretation. Detailed description of the system can be found in our [paper](To appear).

Example Results

Belows shows an example of our inpainted manga image. Our method automatically fills up the disoccluded regions with meaningful structural lines and seamless screentones. Example

Prerequisites

  • Python 3.6
  • PyTorch 1.2
  • NVIDIA GPU + CUDA cuDNN

Installation

  • Clone this repo:
git clone https://github.com/msxie92/MangaInpainting.git
cd MangaInpainting
pip install -r requirements.txt

Datasets

1) Images

As most of our training manga images are under copyright. We recommend you to use restored Manga109 dataset. Please download datasets from official websites and then use Manga Restoration to restored the bitonal nature. Please use a larger resolution instead of the predicted one to tolerant the prediction error. Exprically, set scale>1.4.

2) Structural lines

Our model is trained on structural lines extracted by Li et al.. You can download their publically available testing code.

3) Masks

Our model is trained on both regular masks (randomly generated rectangle masks) and irregular masks (provided by Liu et al.). You can download publically available Irregular Mask Dataset from their website. Alternatively, you can download Quick Draw Irregular Mask Dataset by Karim Iskakov which is combination of 50 million strokes drawn by human hand.

Getting Started

Download the pre-trained models using the following links and copy them under ./checkpoints directory.

MangaInpainting

ScreenVAE

Testing

To test the model, create a config.yaml file similar to the example config file and copy it under your checkpoints directory.

In each case, you need to provide an input image (image with a mask) and a mask file. Please make sure that the mask file covers the entire mask region in the input image. To test the model:

python test.py --checkpoints [path to checkpoints] \
      --input [path to the output directory]\
      --mask [path to the output directory]\
      --line [path to the output directory]\
      --output [path to the output directory]

We provide some test examples under ./examples directory. Please download the pre-trained models and run:

python test.py --checkpoints ./checkpoints/mangainpaintor \
      --input examples/test/imgs/ \
      --mask examples/test/masks/ \
      --line examples/test/lines/ \
      --output examples/test/results/

This script will inpaint all images in ./examples/manga/imgs using their corresponding masks in ./examples/manga/mask directory and saves the results in ./checkpoints/results directory.

Model Configuration

The model configuration is stored in a config.yaml file under your checkpoints directory.

Citation

If any part of our paper and code is helpful to your work, please generously cite with:

@inproceedings{xie2021seamless,
	title    ={Seamless Manga Inpainting with Semantics Awareness},
	author   ={Minshan Xie and Menghan Xia and Xueting Liu and Chengze Li and Tien-Tsin Wong},
	journal  = {ACM Transactions on Graphics (SIGGRAPH 2021 issue)},
	month    = {August},
	year     = {2021},
	volume   = {40},
        number   = {4},
        pages    = {96:1--96:11}
}

Reference

πŸ—Ί General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started β€’ Training β€’ Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
Ascend your Jupyter Notebook usage

Jupyter Ascending Sync Jupyter Notebooks from any editor About Jupyter Ascending lets you edit Jupyter notebooks from your favorite editor, then insta

Untitled AI 254 Jan 08, 2023
Efficient Householder transformation in PyTorch

Efficient Householder Transformation in PyTorch This repository implements the Householder transformation algorithm for calculating orthogonal matrice

Anton Obukhov 49 Nov 20, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
TransGAN: Two Transformers Can Make One Strong GAN

[Preprint] "TransGAN: Two Transformers Can Make One Strong GAN", Yifan Jiang, Shiyu Chang, Zhangyang Wang

VITA 1.5k Jan 07, 2023
Galactic and gravitational dynamics in Python

Gala is a Python package for Galactic and gravitational dynamics. Documentation The documentation for Gala is hosted on Read the docs. Installation an

Adrian Price-Whelan 101 Dec 22, 2022
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
πŸ… The Most Comprehensive List of Kaggle Solutions and Ideas πŸ…

πŸ… Collection of Kaggle Solutions and Ideas πŸ…

Farid Rashidi 2.3k Jan 08, 2023
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
[ICML 2021] β€œ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
CoaT: Co-Scale Conv-Attentional Image Transformers

CoaT: Co-Scale Conv-Attentional Image Transformers Introduction This repository contains the official code and pretrained models for CoaT: Co-Scale Co

mlpc-ucsd 191 Dec 03, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023