Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Overview

Seamless Manga Inpainting with Semantics Awareness

[SIGGRAPH 2021](To appear) | Project Website | BibTex

Introduction:

Manga inpainting fills up the disoccluded pixels due to the removal of dialogue balloons or ``sound effect'' text. This process is long needed by the industry for the language localization and the conversion to animated manga. It is mostly done manually, as existing methods (mostly for natural image inpainting) cannot produce satisfying results. We present the first manga inpainting method, a deep learning model, that generates high-quality results. Instead of direct inpainting, we propose to separate the complicated inpainting into two major phases, semantic inpainting and appearance synthesis. This separation eases both the feature understanding and hence the training of the learning model. A key idea is to disentangle the structural line and screentone, that helps the network to better distinguish the structural line and the screentone features for semantic interpretation. Detailed description of the system can be found in our [paper](To appear).

Example Results

Belows shows an example of our inpainted manga image. Our method automatically fills up the disoccluded regions with meaningful structural lines and seamless screentones. Example

Prerequisites

  • Python 3.6
  • PyTorch 1.2
  • NVIDIA GPU + CUDA cuDNN

Installation

  • Clone this repo:
git clone https://github.com/msxie92/MangaInpainting.git
cd MangaInpainting
pip install -r requirements.txt

Datasets

1) Images

As most of our training manga images are under copyright. We recommend you to use restored Manga109 dataset. Please download datasets from official websites and then use Manga Restoration to restored the bitonal nature. Please use a larger resolution instead of the predicted one to tolerant the prediction error. Exprically, set scale>1.4.

2) Structural lines

Our model is trained on structural lines extracted by Li et al.. You can download their publically available testing code.

3) Masks

Our model is trained on both regular masks (randomly generated rectangle masks) and irregular masks (provided by Liu et al.). You can download publically available Irregular Mask Dataset from their website. Alternatively, you can download Quick Draw Irregular Mask Dataset by Karim Iskakov which is combination of 50 million strokes drawn by human hand.

Getting Started

Download the pre-trained models using the following links and copy them under ./checkpoints directory.

MangaInpainting

ScreenVAE

Testing

To test the model, create a config.yaml file similar to the example config file and copy it under your checkpoints directory.

In each case, you need to provide an input image (image with a mask) and a mask file. Please make sure that the mask file covers the entire mask region in the input image. To test the model:

python test.py --checkpoints [path to checkpoints] \
      --input [path to the output directory]\
      --mask [path to the output directory]\
      --line [path to the output directory]\
      --output [path to the output directory]

We provide some test examples under ./examples directory. Please download the pre-trained models and run:

python test.py --checkpoints ./checkpoints/mangainpaintor \
      --input examples/test/imgs/ \
      --mask examples/test/masks/ \
      --line examples/test/lines/ \
      --output examples/test/results/

This script will inpaint all images in ./examples/manga/imgs using their corresponding masks in ./examples/manga/mask directory and saves the results in ./checkpoints/results directory.

Model Configuration

The model configuration is stored in a config.yaml file under your checkpoints directory.

Citation

If any part of our paper and code is helpful to your work, please generously cite with:

@inproceedings{xie2021seamless,
	title    ={Seamless Manga Inpainting with Semantics Awareness},
	author   ={Minshan Xie and Menghan Xia and Xueting Liu and Chengze Li and Tien-Tsin Wong},
	journal  = {ACM Transactions on Graphics (SIGGRAPH 2021 issue)},
	month    = {August},
	year     = {2021},
	volume   = {40},
        number   = {4},
        pages    = {96:1--96:11}
}

Reference

FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Official pytorch implementation of paper Dual-Level Collaborative Transformer for Image Captioning (AAAI 2021).

Dual-Level Collaborative Transformer for Image Captioning This repository contains the reference code for the paper Dual-Level Collaborative Transform

lyricpoem 160 Dec 11, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Official implementation of the MM'21 paper Constrained Graphic Layout Generation via Latent Optimization

[MM'21] Constrained Graphic Layout Generation via Latent Optimization This repository provides the official code for the paper "Constrained Graphic La

Kotaro Kikuchi 73 Dec 27, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021

Global Pooling, More than Meets the Eye: Position Information is Encoded Channel-Wise in CNNs, ICCV 2021 Global Pooling, More than Meets the Eye: Posi

Md Amirul Islam 32 Apr 24, 2022
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM Automatic Evaluation Metric described in the papers BaryScore (EM

Pierre Colombo 28 Dec 28, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
ACL'2021: LM-BFF: Better Few-shot Fine-tuning of Language Models

LM-BFF (Better Few-shot Fine-tuning of Language Models) This is the implementation of the paper Making Pre-trained Language Models Better Few-shot Lea

Princeton Natural Language Processing 607 Jan 07, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Multivariate Time Series Forecasting with efficient Transformers. Code for the paper "Long-Range Transformers for Dynamic Spatiotemporal Forecasting."

Spacetimeformer Multivariate Forecasting This repository contains the code for the paper, "Long-Range Transformers for Dynamic Spatiotemporal Forecast

QData 440 Jan 02, 2023