Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Related tags

Deep LearningGGE
Overview

Greedy Gradient Ensemble for De-biased VQA

Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can extend to other tasks with dataset biases.

@inproceedings{han2015greedy,
	title={Greedy Gradient Ensemble for Robust Visual Question Answering},
	author={Han, Xinzhe and Wang, Shuhui and Su, Chi and Huang, Qingming and Tian, Qi},
	booktitle={Proceedings of the IEEE international conference on computer vision},
	year={2021}
}

Prerequisites

We use Anaconda to manage our dependencies . You will need to execute the following steps to install all dependencies:

  • Edit the value for prefix variable in requirements.yml file, by assigning it the path to conda environment

  • Then, install all dependencies using: conda env create -f requirements.yml

  • Change to the new environment: bias

Data Setup

  • Download UpDn features from google drive into /data/detection_features folder
  • Download questions/answers for VQAv2 and VQA-CPv2 by executing bash tools/download.sh
  • Download visual cues/hints provided in A negative case analysis of visual grounding methods for VQA into data/hints. Note that we use caption based hints for grounding-based method reproduction, CGR and CGW.
  • Preprocess process the data with bash tools/process.sh

Training GGE

Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias gradient --topq 1 --topv -1 --qvp 5 --output [] 

to train a model. In main.py, import base_model for UpDn baseline; import base_model_ban as base_model for BAN baseline; import base_model_block as base_model for S-MRL baseline.

Set MODE as gge_iter and gge_tog for our best performance model; gge_d_bias and gge_q_bias for single bias ablation; base for baseline model.

Training ablations in Sec. 3 and Sec. 5

For models in Sec. 3, execute from train_ab import train and import base_model_ab as base_model in main.py. Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias METHODS --topq 1 --topv -1 --qvp 5 --output [] 

METHODS learned_mixin for LMH, MODE inv_sup for inv_sup strategy, v_inverse for inverse hint. Note that the results for HINT$_inv$ is obtained by running the code from A negative case analysis of visual grounding methods for VQA.

To test v_only model, import base_model_v_only as base_model in main.py.

To test RUBi and LMH+RUBi, run

CUDA_VISIBLE_DEVICES=0 python rubi_main.py --dataset cpv2 --mode MODE --output [] 

MODE updn is for RUBi, lmh_rubi is for LMH+RUBi.

Testing

For test stage, we output the overall Acc, CGR, CGW and CGD at threshold 0.2. change base_model to corresponding model in sensitivity.py and run

CUDA_VISIBLE_DEVICES=0 python sensitivity.py --dataset cpv2 --debias METHOD --load_checkpoint_path logs/your_path --output your_path

Visualization

We provide visualization in visualization.ipynb. If you want to see other visualization by yourself, download MS-COCO 2014 to data/images.

Acknowledgements

This repo uses features from A negative case analysis of visual grounding methods for VQA. Some codes are modified from CSS and UpDn.

Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
A dataset for online Arabic calligraphy

Calliar Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic callig

ARBML 114 Dec 28, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models

Robbing the FED: Directly Obtaining Private Data in Federated Learning with Modified Models This repo contains a barebones implementation for the atta

16 Dec 04, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
The deployment framework aims to provide a simple, lightweight, fast integrated, pipelined deployment framework that ensures reliability, high concurrency and scalability of services.

savior是一个能够进行快速集成算法模块并支持高性能部署的轻量开发框架。能够帮助将团队进行快速想法验证(PoC),避免重复的去github上找模型然后复现模型;能够帮助团队将功能进行流程拆解,很方便的提高分布式执行效率;能够有效减少代码冗余,减少不必要负担。

Tao Luo 125 Dec 22, 2022