Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Related tags

Deep LearningGGE
Overview

Greedy Gradient Ensemble for De-biased VQA

Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can extend to other tasks with dataset biases.

@inproceedings{han2015greedy,
	title={Greedy Gradient Ensemble for Robust Visual Question Answering},
	author={Han, Xinzhe and Wang, Shuhui and Su, Chi and Huang, Qingming and Tian, Qi},
	booktitle={Proceedings of the IEEE international conference on computer vision},
	year={2021}
}

Prerequisites

We use Anaconda to manage our dependencies . You will need to execute the following steps to install all dependencies:

  • Edit the value for prefix variable in requirements.yml file, by assigning it the path to conda environment

  • Then, install all dependencies using: conda env create -f requirements.yml

  • Change to the new environment: bias

Data Setup

  • Download UpDn features from google drive into /data/detection_features folder
  • Download questions/answers for VQAv2 and VQA-CPv2 by executing bash tools/download.sh
  • Download visual cues/hints provided in A negative case analysis of visual grounding methods for VQA into data/hints. Note that we use caption based hints for grounding-based method reproduction, CGR and CGW.
  • Preprocess process the data with bash tools/process.sh

Training GGE

Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias gradient --topq 1 --topv -1 --qvp 5 --output [] 

to train a model. In main.py, import base_model for UpDn baseline; import base_model_ban as base_model for BAN baseline; import base_model_block as base_model for S-MRL baseline.

Set MODE as gge_iter and gge_tog for our best performance model; gge_d_bias and gge_q_bias for single bias ablation; base for baseline model.

Training ablations in Sec. 3 and Sec. 5

For models in Sec. 3, execute from train_ab import train and import base_model_ab as base_model in main.py. Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias METHODS --topq 1 --topv -1 --qvp 5 --output [] 

METHODS learned_mixin for LMH, MODE inv_sup for inv_sup strategy, v_inverse for inverse hint. Note that the results for HINT$_inv$ is obtained by running the code from A negative case analysis of visual grounding methods for VQA.

To test v_only model, import base_model_v_only as base_model in main.py.

To test RUBi and LMH+RUBi, run

CUDA_VISIBLE_DEVICES=0 python rubi_main.py --dataset cpv2 --mode MODE --output [] 

MODE updn is for RUBi, lmh_rubi is for LMH+RUBi.

Testing

For test stage, we output the overall Acc, CGR, CGW and CGD at threshold 0.2. change base_model to corresponding model in sensitivity.py and run

CUDA_VISIBLE_DEVICES=0 python sensitivity.py --dataset cpv2 --debias METHOD --load_checkpoint_path logs/your_path --output your_path

Visualization

We provide visualization in visualization.ipynb. If you want to see other visualization by yourself, download MS-COCO 2014 to data/images.

Acknowledgements

This repo uses features from A negative case analysis of visual grounding methods for VQA. Some codes are modified from CSS and UpDn.

Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Delving into Localization Errors for Monocular 3D Object Detection, CVPR'2021

Delving into Localization Errors for Monocular 3D Detection By Xinzhu Ma, Yinmin Zhang, Dan Xu, Dongzhan Zhou, Shuai Yi, Haojie Li, Wanli Ouyang. Intr

XINZHU.MA 124 Jan 04, 2023
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Supporting code for "Autoregressive neural-network wavefunctions for ab initio quantum chemistry".

naqs-for-quantum-chemistry This repository contains the codebase developed for the paper Autoregressive neural-network wavefunctions for ab initio qua

Tom Barrett 24 Dec 23, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
The code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning"

The Code for MM2021 paper "Multi-Level Counterfactual Contrast for Visual Commonsense Reasoning" Setting up and using the repo Get the dataset. Follow

4 Apr 20, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Coming soon!

ToxiChat Code and data for the EMNLP 2021 paper "Just Say No: Analyzing the Stance of Neural Dialogue Generation in Offensive Contexts". Install depen

Ashutosh Baheti 11 Jan 01, 2023
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
blind SQLIpy sebuah alat injeksi sql yang menggunakan waktu sql untuk mendapatkan sebuah server database.

blind SQLIpy Alat blind SQLIpy ini merupakan alat injeksi sql yang menggunakan metode time based blind sql injection metode tersebut membutuhkan waktu

Galih Anggoro Prasetya 4 Feb 24, 2022
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
PyTorch Implementation of Region Similarity Representation Learning (ReSim)

ReSim This repository provides the PyTorch implementation of Region Similarity Representation Learning (ReSim) described in this paper: @Article{xiao2

Tete Xiao 74 Jan 03, 2023
The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting".

IGMTF The source code and data of the paper "Instance-wise Graph-based Framework for Multivariate Time Series Forecasting". Requirements The framework

Wentao Xu 24 Dec 05, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
Synthetic LiDAR sequential point cloud dataset with point-wise annotations

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud This is official repository of the SynLiDAR dataset. For technical details, ple

78 Dec 27, 2022