Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Related tags

Deep LearningGGE
Overview

Greedy Gradient Ensemble for De-biased VQA

Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can extend to other tasks with dataset biases.

@inproceedings{han2015greedy,
	title={Greedy Gradient Ensemble for Robust Visual Question Answering},
	author={Han, Xinzhe and Wang, Shuhui and Su, Chi and Huang, Qingming and Tian, Qi},
	booktitle={Proceedings of the IEEE international conference on computer vision},
	year={2021}
}

Prerequisites

We use Anaconda to manage our dependencies . You will need to execute the following steps to install all dependencies:

  • Edit the value for prefix variable in requirements.yml file, by assigning it the path to conda environment

  • Then, install all dependencies using: conda env create -f requirements.yml

  • Change to the new environment: bias

Data Setup

  • Download UpDn features from google drive into /data/detection_features folder
  • Download questions/answers for VQAv2 and VQA-CPv2 by executing bash tools/download.sh
  • Download visual cues/hints provided in A negative case analysis of visual grounding methods for VQA into data/hints. Note that we use caption based hints for grounding-based method reproduction, CGR and CGW.
  • Preprocess process the data with bash tools/process.sh

Training GGE

Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias gradient --topq 1 --topv -1 --qvp 5 --output [] 

to train a model. In main.py, import base_model for UpDn baseline; import base_model_ban as base_model for BAN baseline; import base_model_block as base_model for S-MRL baseline.

Set MODE as gge_iter and gge_tog for our best performance model; gge_d_bias and gge_q_bias for single bias ablation; base for baseline model.

Training ablations in Sec. 3 and Sec. 5

For models in Sec. 3, execute from train_ab import train and import base_model_ab as base_model in main.py. Run

CUDA_VISIBLE_DEVICES=0 python main.py --dataset cpv2 --mode MODE --debias METHODS --topq 1 --topv -1 --qvp 5 --output [] 

METHODS learned_mixin for LMH, MODE inv_sup for inv_sup strategy, v_inverse for inverse hint. Note that the results for HINT$_inv$ is obtained by running the code from A negative case analysis of visual grounding methods for VQA.

To test v_only model, import base_model_v_only as base_model in main.py.

To test RUBi and LMH+RUBi, run

CUDA_VISIBLE_DEVICES=0 python rubi_main.py --dataset cpv2 --mode MODE --output [] 

MODE updn is for RUBi, lmh_rubi is for LMH+RUBi.

Testing

For test stage, we output the overall Acc, CGR, CGW and CGD at threshold 0.2. change base_model to corresponding model in sensitivity.py and run

CUDA_VISIBLE_DEVICES=0 python sensitivity.py --dataset cpv2 --debias METHOD --load_checkpoint_path logs/your_path --output your_path

Visualization

We provide visualization in visualization.ipynb. If you want to see other visualization by yourself, download MS-COCO 2014 to data/images.

Acknowledgements

This repo uses features from A negative case analysis of visual grounding methods for VQA. Some codes are modified from CSS and UpDn.

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network

Explore the Expression: Facial Expression Generation using Auxiliary Classifier Generative Adversarial Network This is the official implementation of

azad 2 Jul 09, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Tianshou - An elegant PyTorch deep reinforcement learning library.

Tianshou (天授) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on

Tsinghua Machine Learning Group 5.5k Jan 05, 2023
Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

FAC-Net Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng

21 Nov 22, 2022
Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Discretization Robust Correspondence Benchmark One challenge of machine learning on 3D surfaces is that there are many different representations/sampl

Nicholas Sharp 10 Sep 30, 2022
CLIPort: What and Where Pathways for Robotic Manipulation

CLIPort CLIPort: What and Where Pathways for Robotic Manipulation Mohit Shridhar, Lucas Manuelli, Dieter Fox CoRL 2021 CLIPort is an end-to-end imitat

246 Dec 11, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Emotion Recognition from Facial Images

Reconhecimento de Emoções a partir de imagens faciais Este projeto implementa um classificador simples que utiliza técncias de deep learning e transfe

Gabriel 2 Feb 09, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
project page for VinVL

VinVL: Revisiting Visual Representations in Vision-Language Models Updates 02/28/2021: Project page built. Introduction This repository is the project

308 Jan 09, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022