Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

Overview

snc4onnx

Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

https://github.com/PINTO0309/simple-onnx-processing-tools

Downloads GitHub PyPI CodeQL

1. Setup

1-1. HostPC

### option
$ echo export PATH="~/.local/bin:$PATH" >> ~/.bashrc \
&& source ~/.bashrc

### run
$ pip install -U onnx \
&& pip install -U onnx-simplifier \
&& python3 -m pip install -U onnx_graphsurgeon --index-url https://pypi.ngc.nvidia.com \
&& pip install -U snc4onnx

1-2. Docker

### docker pull
$ docker pull pinto0309/snc4onnx:latest

### docker build
$ docker build -t pinto0309/snc4onnx:latest .

### docker run
$ docker run --rm -it -v `pwd`:/workdir pinto0309/snc4onnx:latest
$ cd /workdir

2. CLI Usage

$ snc4onnx -h

usage:
  snc4onnx [-h]
    --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
    --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
    [--op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]]
    [--output_onnx_file_path OUTPUT_ONNX_FILE_PATH]
    [--output_of_onnx_file_in_the_process_of_fusion]
    [--non_verbose]

optional arguments:
  -h, --help
    show this help message and exit

  --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
    Input onnx file paths. At least two onnx files must be specified.

  --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
    The names of the output OP to join from and the input OP to join to are
    out1 in1 out2 in2 out3 in3 .... format.
    In other words, to combine model1 and model2,
    --srcop_destop model1_out1 model2_in1 model1_out2 model2_in2
    Also, --srcop_destop can be specified multiple times.
    The first --srcop_destop specifies the correspondence between model1 and model2,
    and the second --srcop_destop specifies the correspondence
    between model1 and model2 combined and model3.
    It is necessary to take into account that the prefix specified
    in op_prefixes_after_merging is given at the beginning of each OP name.
    e.g. To combine model1 with model2 and model3.
    --srcop_destop model1_src_op1 model2_dest_op1 model1_src_op2 model2_dest_op2 ...
    --srcop_destop comb_model12_src_op1 model3_dest_op1 comb_model12_src_op2 model3_dest_op2 ...

  --op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]
    Since a single ONNX file cannot contain multiple OPs with the same name,
    a prefix is added to all OPs in each input ONNX model to avoid duplication.
    Specify the same number of paths as input_onnx_file_paths.
    e.g. --op_prefixes_after_merging model1_prefix model2_prefix model3_prefix ...

  --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
    Output onnx file path.

  --output_of_onnx_file_in_the_process_of_fusion
    Output of onnx files in the process of fusion.

  --non_verbose
    Do not show all information logs. Only error logs are displayed.

3. In-script Usage

$ python
>>> from snc4onnx import combine
>>> help(combine)

Help on function combine in module snc4onnx.onnx_network_combine:

combine(
  srcop_destop: List[str],
  op_prefixes_after_merging: Union[List[str], NoneType] = [],
  input_onnx_file_paths: Union[List[str], NoneType] = [],
  onnx_graphs: Union[List[onnx.onnx_ml_pb2.ModelProto], NoneType] = [],
  output_onnx_file_path: Union[str, NoneType] = '',
  output_of_onnx_file_in_the_process_of_fusion: Union[bool, NoneType] = False,
  non_verbose: Union[bool, NoneType] = False
) -> onnx.onnx_ml_pb2.ModelProto

    Parameters
    ----------
    srcop_destop: List[str]
        The names of the output OP to join from and the input OP to join to are
        [["out1","in1"], ["out2","in2"], ["out3","in3"]] format.

        In other words, to combine model1 and model2,
        srcop_destop =
            [
                ["model1_out1_opname","model2_in1_opname"],
                ["model1_out2_opname","model2_in2_opname"]
            ]

        The first srcop_destop specifies the correspondence between model1 and model2,
        and the second srcop_destop specifies the correspondence
        between model1 and model2 combined and model3.
        It is necessary to take into account that the prefix specified
        in op_prefixes_after_merging is given at the beginning of each OP name.

        e.g. To combine model1 with model2 and model3.
        srcop_destop =
            [
                [
                    ["model1_src_op1","model2_dest_op1"],
                    ["model1_src_op2","model2_dest_op2"]
                ],
                [
                    ["combined_model1.2_src_op1","model3_dest_op1"],
                    ["combined_model1.2_src_op2","model3_dest_op2"]
                ],
                ...
            ]

    op_prefixes_after_merging: List[str]
        Since a single ONNX file cannot contain multiple OPs with the same name,
        a prefix is added to all OPs in each input ONNX model to avoid duplication.
        Specify the same number of paths as input_onnx_file_paths.
        e.g. op_prefixes_after_merging = ["model1_prefix","model2_prefix","model3_prefix", ...]

    input_onnx_file_paths: Optional[List[str]]
        Input onnx file paths. At least two onnx files must be specified.
        Either input_onnx_file_paths or onnx_graphs must be specified.
        onnx_graphs If specified, ignore input_onnx_file_paths and process onnx_graphs.
        e.g. input_onnx_file_paths = ["model1.onnx", "model2.onnx", "model3.onnx", ...]

    onnx_graphs: Optional[List[onnx.ModelProto]]
        List of onnx.ModelProto. At least two onnx graphs must be specified.
        Either input_onnx_file_paths or onnx_graphs must be specified.
        onnx_graphs If specified, ignore input_onnx_file_paths and process onnx_graphs.
        e.g. onnx_graphs = [graph1, graph2, graph3, ...]

    output_onnx_file_path: Optional[str]
        Output onnx file path.
        If not specified, .onnx is not output.
        Default: ''

    output_of_onnx_file_in_the_process_of_fusion: Optional[bool]
        Output of onnx files in the process of fusion.
        Default: False

    non_verbose: Optional[bool]
        Do not show all information logs. Only error logs are displayed.
        Default: False

    Returns
    -------
    combined_graph: onnx.ModelProto
        Combined onnx ModelProto

4. CLI Execution

$ snc4onnx \
--input_onnx_file_paths crestereo_init_iter2_120x160.onnx crestereo_next_iter2_240x320.onnx \
--srcop_destop output flow_init \
--op_prefixes_after_merging init next

5. In-script Execution

5-1. ONNX files

from snc4onnx import combine

combined_graph = combine(
    srcop_destop = [
        ['output', 'flow_init']
    ],
    op_prefixes_after_merging = [
        'init',
        'next',
    ],
    input_onnx_file_paths = [
        'crestereo_init_iter2_120x160.onnx',
        'crestereo_next_iter2_240x320.onnx',
    ],
    non_verbose = True,
)

5-2. onnx.ModelProtos

from snc4onnx import combine

combined_graph = combine(
    srcop_destop = [
        ['output', 'flow_init']
    ],
    op_prefixes_after_merging = [
        'init',
        'next',
    ],
    onnx_graphs = [
        graph1,
        graph2,
        graph3,
    ],
    non_verbose = True,
)

6. Sample

6-1 INPUT <-> OUTPUT

  • Summary

    image

  • Model.1

    image

  • Model.2

    image

  • Merge

    $ snc4onnx \
    --input_onnx_file_paths crestereo_init_iter2_120x160.onnx crestereo_next_iter2_240x320.onnx \
    --op_prefixes_after_merging init next \
    --srcop_destop output flow_init
  • Result

    image image

6-2 INPUT + INPUT

  • Summary

    image

  • Model.1

    image

  • Model.2

    image

  • Merge

    $ snc4onnx \
    --input_onnx_file_paths objectron_camera_224x224.onnx objectron_chair_224x224.onnx \
    --srcop_destop input_1 input_1 \
    --op_prefixes_after_merging camera chair \
    --output_onnx_file_path objectron_camera_chair_224x224.onnx
  • Result

    image image

7. Reference

  1. https://github.com/onnx/onnx/blob/main/docs/PythonAPIOverview.md
  2. https://github.com/PINTO0309/sne4onnx
  3. https://github.com/PINTO0309/snd4onnx
  4. https://github.com/PINTO0309/scs4onnx
  5. https://github.com/PINTO0309/sog4onnx
  6. https://github.com/PINTO0309/PINTO_model_zoo

8. Issues

https://github.com/PINTO0309/simple-onnx-processing-tools/issues

You might also like...
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.
MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML.

MMdnn MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model manage

tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

Simple node deletion tool for onnx.
Simple node deletion tool for onnx.

snd4onnx Simple node deletion tool for onnx. I only test very miscellaneous and limited patterns as a hobby. There are probably a large number of bugs

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. PyTorch ,ONNX and TensorRT implementation of YOLOv4
PyTorch ,ONNX and TensorRT implementation of YOLOv4

PyTorch ,ONNX and TensorRT implementation of YOLOv4

Releases(1.0.11)
  • 1.0.11(Jan 2, 2023)

  • 1.0.10(Jan 2, 2023)

  • 1.0.9(Sep 7, 2022)

    • Add short form parameter

      $ snc4onnx -h
      
      usage:
        snc4onnx [-h]
          -if INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
          -sd SRCOP_DESTOP [SRCOP_DESTOP ...]
          [-opam OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]]
          [-of OUTPUT_ONNX_FILE_PATH]
          [-f]
          [-n]
      
      optional arguments:
        -h, --help
          show this help message and exit.
      
        -if INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...], --input_onnx_file_paths INPUT_ONNX_FILE_PATHS [INPUT_ONNX_FILE_PATHS ...]
            Input onnx file paths. At least two onnx files must be specified.
      
        -sd SRCOP_DESTOP [SRCOP_DESTOP ...], --srcop_destop SRCOP_DESTOP [SRCOP_DESTOP ...]
            The names of the output OP to join from and the input OP to join to are
            out1 in1 out2 in2 out3 in3 ....
            format.
            In other words, to combine model1 and model2,
            --srcop_destop model1_out1 model2_in1 model1_out2 model2_in2
            Also, --srcop_destop can be specified multiple times.
            The first --srcop_destop specifies the correspondence between model1 and model2,
            and the second --srcop_destop specifies the correspondence between
            model1 and model2 combined and model3.
            It is necessary to take into account that the prefix specified
            in op_prefixes_after_merging is
            given at the beginning of each OP name.
            e.g. To combine model1 with model2 and model3.
            --srcop_destop model1_src_op1 model2_dest_op1 model1_src_op2 model2_dest_op2 ...
            --srcop_destop combined_model1.2_src_op1 model3_dest_op1 combined_model1.2_src_op2 model3_dest_op2 ...
      
        -opam OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...], --op_prefixes_after_merging OP_PREFIXES_AFTER_MERGING [OP_PREFIXES_AFTER_MERGING ...]
            Since a single ONNX file cannot contain multiple OPs with the same name,
            a prefix is added to all OPs in each input ONNX model to avoid duplication.
            Specify the same number of paths as input_onnx_file_paths.
            e.g. --op_prefixes_after_merging model1_prefix model2_prefix model3_prefix ...
      
        -of OUTPUT_ONNX_FILE_PATH, --output_onnx_file_path OUTPUT_ONNX_FILE_PATH
            Output onnx file path.
      
        -f, --output_of_onnx_file_in_the_process_of_fusion
            Output of onnx files in the process of fusion.
      
        -n, --non_verbose
            Do not show all information logs. Only error logs are displayed.
      
    Source code(tar.gz)
    Source code(zip)
  • 1.0.8(Sep 6, 2022)

    1. Fixed a bug that caused INPUT names to be corrupted. There was a problem with the removal of prefixes added during the model merging process.
      • before: main_input -> put (bug)
      • after: main_input -> input
      • Stop using lstrip and change to forward matching logic with re.sub
    2. Added process to clean up OUTPUT prefixes as much as possible image
    Source code(tar.gz)
    Source code(zip)
  • 1.0.7(May 25, 2022)

  • 1.0.6(May 7, 2022)

  • 1.0.5(May 1, 2022)

  • 1.0.4(Apr 27, 2022)

    • Change op_prefixes_after_merging to optional
    • Added duplicate OP name check
      • If there is a duplicate OP name, the model cannot be combined and the process is aborted with the following error message.
        ERROR: 
        There is a duplicate OP name after merging models.
        op_name:input count:2, op_name:output count:2
        Avoid duplicate OP names by specifying a prefix in op_prefixes_after_merging.
        
    Source code(tar.gz)
    Source code(zip)
  • 1.0.3(Apr 24, 2022)

  • 1.0.2(Apr 11, 2022)

  • 1.0.1(Apr 10, 2022)

  • 1.0.0(Apr 10, 2022)

Owner
Katsuya Hyodo
Hobby programmer. Intel Software Innovator Program member.
Katsuya Hyodo
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Official repository for the ICCV 2021 paper: UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model.

UltraPose: Synthesizing Dense Pose with 1 Billion Points by Human-body Decoupling 3D Model Official repository for the ICCV 2021 paper: UltraPose: Syn

MomoAILab 92 Dec 21, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Inkscape extensions for figure resizing and editing

Academic-Inkscape: Extensions for figure resizing and editing This repository contains several Inkscape extensions designed for editing plots. Scale P

192 Dec 26, 2022
Train CPPNs as a Generative Model, using Generative Adversarial Networks and Variational Autoencoder techniques to produce high resolution images.

cppn-gan-vae tensorflow Train Compositional Pattern Producing Network as a Generative Model, using Generative Adversarial Networks and Variational Aut

hardmaru 343 Dec 29, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
Official implementation of the paper 'Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution'

DASR Paper Efficient and Degradation-Adaptive Network for Real-World Image Super-Resolution Jie Liang, Hui Zeng, and Lei Zhang. In arxiv preprint. Abs

81 Dec 28, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Project Page | Paper A Shading-Guided Generative Implicit Model

Xingang Pan 115 Dec 18, 2022
ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet)

ALL Snow Removed: Single Image Desnowing Algorithm Using Hierarchical Dual-tree Complex Wavelet Representation and Contradict Channel Loss (HDCWNet) (

Wei-Ting Chen 49 Dec 27, 2022
[CVPR 2022] Official Pytorch code for OW-DETR: Open-world Detection Transformer

OW-DETR: Open-world Detection Transformer (CVPR 2022) [Paper] Akshita Gupta*, Sanath Narayan*, K J Joseph, Salman Khan, Fahad Shahbaz Khan, Mubarak Sh

Akshita Gupta 127 Dec 27, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
2 Jul 19, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022