[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Overview

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

This repo contains the PyTorch code and implementation for the paper Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning.

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning
Bin Liang#, Wangda Luo#, Xiang Li, Lin Gui, Min Yang, Xiaoqi Yu, and Ruifeng Xu*. Proceedings of CIKM 2020

Please cite our paper and kindly give a star for this repository if you use this code.

For any question, plaese email [email protected] or [email protected].

Model Overview

model

Requirement

  • pytorch >= 0.4.0
  • numpy >= 1.13.3
  • sklearn
  • python 3.6 / 3.7
  • CUDA 9.0
  • transformers

To install requirements, run pip install -r requirements.txt.

Dataset

you can directly use the processed dataset located in datasets/:
Note that you need to extract the data from the datasets folder: unzip datasets.zip

├── data
│   │   ├── semeval14(res14,laptop14)
│   │   ├── semeval15(res15)
│   │   ├── semeval16(res16)
│   │   ├── MAMS

The dataSet contains with cl_2X3 is the dataSet obtained after label argment, and each data is as follows:
Context
Aspect
Aspect-sentiment-label(-1:negative;0:netrual;1:positive)
Contrastive-label(aspect-dependent/aspect-invariant)
Contrastive-aspect-label(0:negative;1:netrual;2:positive)

Preparation

a) Download the pytorch version pre-trained bert-base-uncased model and vocabulary from the link provided by huggingface. Then change the value of parameter --bert_model_dir to the directory of the bert model. you can get the pre-trained bert-base-uncased model in https://github.com/huggingface/transformers.

b) Label enhancement method. For new data, additional supervised signals need to be obtained through label enhancement;
    i) Through BERT overfitting the training set, the acc can reach more than 97%;
    ii) Replace aspect with other or mask, and get the emotional label of the aspect after replacing the aspect;
    iii) Determine whether the output label is consistent with the real label, and fill in the aspect-dependent/aspect-invariant label for the data.

c) The data defaults are in data_utils.py, which you can view if you want to change the data entered into the model.

Training

  1. Adjust the parameters and set the experiment.
    --model:Selection model.(bert_spc_cl)
    --dataset:Select dataSet.(acl14,res14,laptop14,res15,res16,mams and so on)
    --num_epoch:Iterations of the model.
    --is_test 0:Verify module.(1 is data verification, 0 is model training)
    --type: Select a task type.(normal,cl2,cl6,cl2X3)
  2. Run the shell script to start the program.
bash run.sh

For run.sh code:


CUDA_VISIBLE_DEVICES=3 \
  python train_cl.py \
  --model_name bert_spc_cl \
  --dataset cl_mams_2X3 \
  --num_epoch 50 \
  --is_test 0 \
  --type cl2X3

For dataset,you can choose these dataset : "cl_acl2014_2X3" "cl_res2014_2X3" "cl_laptop2014_2X3" "cl_res2015_2X3" "cl_res2016_2X3" "cl_mams_2X3".

Testing

bash run_test.sh

Citation

@inproceedings{10.1145/3459637.3482096,
author = {Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
title = {Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
year = {2021},
isbn = {9781450384469},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3459637.3482096},
doi = {10.1145/3459637.3482096},
abstract = {Most existing aspect-based sentiment analysis (ABSA) research efforts are devoted to extracting the aspect-dependent sentiment features from the sentence towards the given aspect. However, it is observed that about 60% of the testing aspects in commonly used public datasets are unknown to the training set. That is, some sentiment features carry the same polarity regardless of the aspects they are associated with (aspect-invariant sentiment), which props up the high accuracy of existing ABSA models when inevitably inferring sentiment polarities for those unknown testing aspects. Therefore, in this paper, we revisit ABSA from a novel perspective by deploying a novel supervised contrastive learning framework to leverage the correlation and difference among different sentiment polarities and between different sentiment patterns (aspect-invariant/-dependent). This allows improving the sentiment prediction for (unknown) testing aspects in the light of distinguishing the roles of valuable sentiment features. Experimental results on 5 benchmark datasets show that our proposed approach substantially outperforms state-of-the-art baselines in ABSA. We further extend existing neural network-based ABSA models with our proposed framework and achieve improved performance.},
booktitle = {Proceedings of the 30th ACM International Conference on Information & Knowledge Management},
pages = {3242–3247},
numpages = {6},
keywords = {sentiment analysis, contrastive learning, aspect sentiment analysis},
location = {Virtual Event, Queensland, Australia},
series = {CIKM '21}
}

or

@inproceedings{liang2021enhancing,
  title={Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning},
  author={Liang, Bin and Luo, Wangda and Li, Xiang and Gui, Lin and Yang, Min and Yu, Xiaoqi and Xu, Ruifeng},
  booktitle={Proceedings of the 30th ACM International Conference on Information \& Knowledge Management},
  pages={3242--3247},
  year={2021}
}

Credits

Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
K-Means Clustering and Hierarchical Clustering Unsupervised Learning Solution in Python3.

Unsupervised Learning - K-Means Clustering and Hierarchical Clustering - The Heritage Foundation's Economic Freedom Index Analysis 2019 - By David Sal

David Salako 1 Jan 12, 2022
load .txt to train YOLOX, same as Yolo others

YOLOX train your data you need generate data.txt like follow format (per line- one image). prepare one data.txt like this: img_path1 x1,y1,x2,y2,clas

LiMingf 18 Aug 18, 2022
Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image (ICCV 2021)

Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color Image Interacting Two-Hand 3D Pose and Shape Reconstruction from Single Color

75 Dec 02, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales

Intro This is the repository for CVPR2021 Dynamic Metric Learning: Towards a Scalable Metric Space to Accommodate Multiple Semantic Scales Vehicle Sam

39 Jul 21, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022
3D dataset of humans Manipulating Objects in-the-Wild (MOW)

MOW dataset [Website] This repository maintains our 3D dataset of humans Manipulating Objects in-the-Wild (MOW). The dataset contains 512 images in th

Zhe Cao 28 Nov 06, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity

Cross-lingual Transfer for Speech Processing using Acoustic Language Similarity Indic TTS Samples can be found at https://peter-yh-wu.github.io/cross-

Peter Wu 1 Nov 12, 2022
[TNNLS 2021] The official code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement"

CSDNet-CSDGAN this is the code for the paper "Learning Deep Context-Sensitive Decomposition for Low-Light Image Enhancement" Environment Preparing pyt

Jiaao Zhang 17 Nov 05, 2022
CS583: Deep Learning

CS583: Deep Learning

Shusen Wang 2.6k Dec 30, 2022
Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021)

Pano-AVQA Official repository of PanoAVQA: Grounded Audio-Visual Question Answering in 360° Videos (ICCV 2021) [Paper] [Poster] [Video] Getting Starte

Heeseung Yun 9 Dec 23, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
Official PyTorch code for Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021)

Mutual Affine Network for Spatially Variant Kernel Estimation in Blind Image Super-Resolution (MANet, ICCV2021) This repository is the official PyTorc

Jingyun Liang 139 Dec 29, 2022