A Python script that creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

Overview

Text to Subtitles - Python

main2

This python file creates subtitles of a given length from text paragraphs that can be easily imported into any Video Editing software such as FinalCut Pro for further adjustments.

1. Table of Contents

2. Description

2.1 Problem

In a fast-paced TV, Film, and Video production environment Video Editors are often faced with the task to create subtitles quickly and efficiently. They will often have a script that they manually into Video Editing software, one subtitle at a time, then adjust the timing.

In the case of Documentary films or long interviews, the number of subtitles can be overwhelming. In addition, there can be multiple subtitles in different languages.

2.2 Solution

Instead of manually typing the text in Video Editing Software or copy-pasting it from a text file one subtitle at a time this python script automatically converts text paragraphs, located in a text file into a standard .srt subtitle file. It can be then imported into any Video Editing Software.

The script creates subtitles of the same length, such as 3 seconds. Therefore, manual adjustments are still needed after importing the subtitles. Nevertheless, this workflow has proven to be much faster than the full manual process described above.

Input:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular

Output:

1
00:00:00,000 --> 0:00:03,000
Call me Ishmael.

2
00:00:03,000 --> 0:00:06,000
Some years ago,
never mind how long precisely,

3
00:00:06,000 --> 0:00:09,000
having little or no money in my purse,
and nothing particular

2.3 Motivation behind the project

I first created this workflow when I was Directing and Video Editing TV mini-series. Since deadlines were extremely tight I was looking at every opportunity to speed up the delivery times while maintaining high quality. I later used it for commercial Videography projects. This solution fits my workflow very well and has proven to be very useful.

2.4 Development history

It was originally built simply by using a stack of regular expressions executed in the TextSoap.app along with some operations in Excel and manula copy-pasting. Later most of the steps were combined in a single Python script that is presented here.

3. Technologies Used

  • Python 3.9.4, compatible with Python 2.7 and above
  • datetime integrated module to work with date and time
  • re integrated regular expression operations module
  • os a portable way of using operating system dependent functionality

4. Installation

Download text_to_video_subtitles.py file from this GitHub repository.

5. Usage

5.1 Prepare .txt file

Take existing script or type it from scratch. Then manually split it into paragraphs in the following format:

Call me Ishmael.

Some years ago,
never mind how long precisely,

having little or no money in my purse,
and nothing particular
  • A single line represents a single line in a subtitle.
  • Empty line defines where one subtitle ends and a new one begins.
  • Normally one subtitle has one or two lines, but it can have more.

5.2 Rename and move .txt file

Paste the text into a text editor, then save it as subtitles.txt, and move the file into the same folder with text_to_subtitles.py.

5.3 Launch Python script

Open Terminal.app. Type python, add space, then drag and drop text_to_video_markers.py and press Return.

run python script with terminal

Alternatively, you can install the latest version of Python. Then right-click on text_to_video_markers.py file and choose Open with -> Python Launcher.app.

open python file with python launcher

Either method will run the script and create subtitles.srt file in the same folder.

5.4 Open subtitles.srt with FinalCut Pro

In FinalCut Pro choose File -> Import -> Captions..., then navigate to newly created subtitles.srt and select Import. This will import subtitles into an existing project. They will be visible in Timeline, Index (Captions), and Viewer. You can now easily adjust individual subtitles in Timeline and edit the text in Timeline and Inspector.

That's it! We have just automatically converted text with paragraphs into a universal .srt subtitle file for further adjustments and manipulations in Video editing software such as FinalCut Pro..

finalcut pro markers imported from text

6. Project Status

The project is: complete I am no longer working on it since I am not working for TV any longer. But if you have some ideas or want me to modify something contact me and we should be able to collaborate.

7. Known Limitations

  • An input text file must be named subtitles.txt
  • Text in subtitles.txt** file must be split into paragraphs.
  • Both text_to_subtitles.py and subtitles.txt must be located in the same folder.
  • The default subtitle length is 3 seconds and can only be changed inside text_to_subtitles.py code by changing the number in dursec = 3 statement.

8. Room for Improvement

  • Testing and logging the issues.
  • Making python script an executable file.
  • Developing GUI to be able to specify .txt and .fcpxml input files with any name and location.
  • Building a web app.

9. License

This project is open-source and available under the GNU General Public License v3.0

10. Contact

Created by @DmytroNorth - feel free to contact me at [email protected]!

Owner
Dmytro North
Dmytro North
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Sub-tomogram-Detection - Deep learning based model for Cyro ET Sub-tomogram-Detection

Deep learning based model for Cyro ET Sub-tomogram-Detection High degree of stru

Siddhant Kumar 2 Feb 04, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
Towards Part-Based Understanding of RGB-D Scans

Towards Part-Based Understanding of RGB-D Scans (CVPR 2021) We propose the task of part-based scene understanding of real-world 3D environments: from

26 Nov 23, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
Building a real-time environment using webcam frame division in OpenCV and classify cropped images using a fine-tuned vision transformers on hybryd datasets samples for facial emotion recognition.

Visual Transformer for Facial Emotion Recognition (FER) This project has the aim to build an efficient Visual Transformer for the Facial Emotion Recog

Mario Sessa 8 Dec 12, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
Code repository for "Reducing Underflow in Mixed Precision Training by Gradient Scaling" presented at IJCAI '20

Reducing Underflow in Mixed Precision Training by Gradient Scaling This project implements the gradient scaling method to improve the performance of m

Ruizhe Zhao 5 Apr 14, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021)

The Official PyTorch Implementation of "LSGM: Score-based Generative Modeling in Latent Space" (NeurIPS 2021) Arash Vahdat*   ·   Karsten Kreis*   ·  

NVIDIA Research Projects 238 Jan 02, 2023