Convert Apple NeuralHash model for CSAM Detection to ONNX.

Overview

AppleNeuralHash2ONNX

Convert Apple NeuralHash model for CSAM Detection to ONNX.

Intro

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression. The steps of hashing is as the following:

  1. Convert image to RGB.
  2. Resize image to 360x360.
  3. Normalize RGB values to [-1, 1] range.
  4. Perform inference on the NeuralHash model.
  5. Calculate dot product of a 96x128 matrix with the resulting vector of 128 floats.
  6. Apply binary step to the resulting 96 float vector.
  7. Convert the vector of 1.0 and 0.0 to bits, resulting in 96-bit binary data.

In this project, we convert Apple's NeuralHash model to ONNX format. A demo script for testing the model is also included.

Prerequisite

OS

Both macOS and Linux will work. In the following sections Debian is used for Linux example.

LZFSE decoder

  • macOS: Install by running brew install lzfse.
  • Linux: Build and install from lzfse source.

Python

Python 3.6 and above should work. Install the following dependencies:

pip install onnx coremltools

Conversion Guide

Step 1: Get NeuralHash model

You will need 4 files from a recent macOS or iOS build:

  • neuralhash_128x96_seed1.dat
  • NeuralHashv3b-current.espresso.net
  • NeuralHashv3b-current.espresso.shape
  • NeuralHashv3b-current.espresso.weights

Option 1: From macOS or jailbroken iOS device (Recommended)

If you have a recent version of macOS (11.4+) or jailbroken iOS (14.7+) installed, simply grab these files from /System/Library/Frameworks/Vision.framework/Resources/ (on macOS) or /System/Library/Frameworks/Vision.framework/ (on iOS).

Option 2: From iOS IPSW (click to reveal)
  1. Download any .ipsw of a recent iOS build (14.7+) from ipsw.me.
  2. Unpack the file:
cd /path/to/ipsw/file
mkdir unpacked_ipsw
cd unpacked_ipsw
unzip ../*.ipsw
  1. Locate system image:
ls -lh

What you need is the largest .dmg file, for example 018-63036-003.dmg.

  1. Mount system image. On macOS simply open the file in Finder. On Linux run the following commands:
# Build and install apfs-fuse
sudo apt install fuse libfuse3-dev bzip2 libbz2-dev cmake g++ git libattr1-dev zlib1g-dev
git clone https://github.com/sgan81/apfs-fuse.git
cd apfs-fuse
git submodule init
git submodule update
mkdir build
cd build
cmake ..
make
sudo make install
sudo ln -s /bin/fusermount /bin/fusermount3
# Mount image
mkdir rootfs
apfs-fuse 018-63036-003.dmg rootfs

Required files are under /System/Library/Frameworks/Vision.framework/ in mounted path.

Put them under the same directory:

mkdir NeuralHash
cd NeuralHash
cp /System/Library/Frameworks/Vision.framework/Resources/NeuralHashv3b-current.espresso.* .
cp /System/Library/Frameworks/Vision.framework/Resources/neuralhash_128x96_seed1.dat .

Step 2: Decode model structure and shapes

Normally compiled Core ML models store structure in model.espresso.net and shapes in model.espresso.shape, both in JSON. It's the same for NeuralHash model but compressed with LZFSE.

dd if=NeuralHashv3b-current.espresso.net bs=4 skip=7 | lzfse -decode -o model.espresso.net
dd if=NeuralHashv3b-current.espresso.shape bs=4 skip=7 | lzfse -decode -o model.espresso.shape
cp NeuralHashv3b-current.espresso.weights model.espresso.weights

Step 3: Convert model to ONNX

cd ..
git clone https://github.com/AsuharietYgvar/TNN.git
cd TNN
python3 tools/onnx2tnn/onnx-coreml/coreml2onnx.py ../NeuralHash

The resulting model is NeuralHash/model.onnx.

Usage

Inspect model

Netron is a perfect tool for this purpose.

Calculate neural hash with onnxruntime

  1. Install required libraries:
pip install onnxruntime pillow
  1. Run nnhash.py on an image:
python3 nnhash.py /path/to/model.onnx /path/to/neuralhash_128x96_seed1.dat image.jpg

Example output:

ab14febaa837b6c1484c35e6

Note: Neural hash generated here might be a few bits off from one generated on an iOS device. This is expected since different iOS devices generate slightly different hashes anyway. The reason is that neural networks are based on floating-point calculations. The accuracy is highly dependent on the hardware. For smaller networks it won't make any difference. But NeuralHash has 200+ layers, resulting in significant cumulative errors.

Device Hash
iPad Pro 10.5-inch 2b186faa6b36ffcc4c4635e1
M1 Mac 2b5c6faa6bb7bdcc4c4731a1
iOS Simulator 2b5c6faa6bb6bdcc4c4731a1
ONNX Runtime 2b5c6faa6bb6bdcc4c4735a1

Credits

  • nhcalc for uncovering NeuralHash private API.
  • TNN for compiled Core ML to ONNX script.
Owner
Asuhariet Ygvar
Asuhariet Ygvar
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
Nicholas Lee 3 Jan 09, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
[ArXiv 2021] One-Shot Generative Domain Adaptation

GenDA - One-Shot Generative Domain Adaptation One-Shot Generative Domain Adaptation Ceyuan Yang*, Yujun Shen*, Zhiyi Zhang, Yinghao Xu, Jiapeng Zhu, Z

GenForce: May Generative Force Be with You 46 Dec 19, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions"

Graph Convolution Simulator (GCS) Source code for "Understanding Knowledge Integration in Language Models with Graph Convolutions" Requirements: PyTor

yifan 10 Oct 18, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022