Pytorch implementation of Masked Auto-Encoder

Related tags

Deep LearningMAE-code
Overview

Masked Auto-Encoder (MAE)

Pytorch implementation of Masked Auto-Encoder:

Usage

  1. Clone to the local.
> git clone https://github.com/liujiyuan13/MAE-code.git MAE-code
  1. Install required packages.
> cd MAE-code
> pip install requirements.txt
  1. Prepare datasets.
  • For Cifar10, Cifar100 and STL, skip this step for it will be done automatically;
  • For ImageNet1K, download and unzip the train(val) set into ./data/ImageNet1K/train(val).
  1. Set parameters.
  • All parameters are kept in default_args() function of main_mae(eval).py file.
  1. Run the code.
> python main_mae.py	# train MAE encoder
> python main_eval.py	# evaluate MAE encoder
  1. Visualize the ouput.
> tensorboard --logdir=./log --port 8888

Detail

Project structure

...
+ ckpt				# checkpoint
+ data 				# data folder
+ img 				# store images for README.md
+ log 				# log files
.gitignore 			
lars.py 			# LARS optimizer
main_eval.py 			# main file for evaluation
main_mae.py  			# main file for MAE training
model.py 			# model definitions of MAE and EvalNet
README.md 
util.py 			# helper functions
vit.py 				# definition of vision transformer

Encoder setting

In the paper, ViT-Base, ViT-Large and ViT-Huge are used. You can switch between them by simply changing the parameters in default_args(). Details can be found here and are listed in following table.

Name Layer Num. Hidden Size MLP Size Head Num.
Arg vit_depth vit_dim vit_mlp_dim vit_heads
ViT-B 12 768 3072 12
ViT-L 24 1024 4096 16
ViT-H 32 1280 5120 16

Evaluation setting

I implement four network training strategies concerned in the paper, including

  • pre-training is used to train MAE encoder and done in main_mae.py.
  • linear probing is used to evaluate MAE encoder. During training, MAE encoder is fixed.
    • args.n_partial = 0
  • partial fine-tuning is used to evaluate MAE encoder. During training, MAE encoder is partially fixed.
    • args.n_partial = 0.5 --> fine-tuning MLP sub-block with the transformer fixed
    • 1<=args.n_partial<=args.vit_depth-1 --> fine-tuning MLP sub-block and last layers of transformer
  • end-to-end fine-tuning is used to evaluate MAE encoder. During training, MAE encoder is fully trainable.
    • args.n_partial = args.vit_depth

Note that the last three strategies are done in main_eval.py where parameter args.n_partial is located.

At the same time, I follow the parameter settings in the paper appendix. Note that partial fine-tuning and end-to-end fine-tuning use the same setting. Nevertheless, I replace RandAug(9, 0.5) with RandomResizedCrop and leave mixup, cutmix and drop path techniques in further implementation.

Result

The experiment reproduce will takes a long time and I am unfortunately busy these days. If you get some results and are willing to contribute, please reach me via email. Thanks!

By the way, I have run the code from start to end. It works! So don't worry about the implementation errors. If you find any, please raise issues or email me.

Licence

This repository is under GPL V3.

About

Thanks project vit-pytorch, pytorch-lars and DeepLearningExamples for their codes contribute to this repository a lot!

Homepage: https://liujiyuan13.github.io

Email: [email protected]

Owner
Jiyuan
Jiyuan
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Answering Open-Domain Questions of Varying Reasoning Steps from Text

This repository contains the authors' implementation of the Iterative Retriever, Reader, and Reranker (IRRR) model in the EMNLP 2021 paper "Answering Open-Domain Questions of Varying Reasoning Steps

26 Dec 22, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN)

Multi-Stage Spatial-Temporal Convolutional Neural Network (MS-GCN) This code implements the skeleton-based action segmentation MS-GCN model from Autom

Benjamin Filtjens 8 Nov 29, 2022
Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size.

Hub is a dataset format with a simple API for creating, storing, and collaborating on AI datasets of any size. The hub data layout enables rapid transformations and streaming of data while training m

Activeloop 5.1k Jan 08, 2023
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
An open source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+. Including offline map and navigation.

Pi Zero Bikecomputer An open-source bike computer based on Raspberry Pi Zero (W, WH) with GPS and ANT+ https://github.com/hishizuka/pizero_bikecompute

hishizuka 264 Jan 02, 2023
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp.

PISE The code for our CVPR paper PISE: Person Image Synthesis and Editing with Decoupled GAN, Project Page, supp. Requirement conda create -n pise pyt

jinszhang 110 Nov 21, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022