Full-featured Decision Trees and Random Forests learner.

Overview

CID3

Latest Release License Github All Releases GitHub Follow Twitter Follow

This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query trees and Random Forests and to fill out an unlabeled file with the predicted classes. Documentation is not yet available, although the program options can be shown with command:

% java -jar cid3.jar -h

usage: java -jar cid3.jar
 -a,--analysis <name>    show causal analysis report
 -c,--criteria <name>    input criteria: c[Certainty], e[Entropy], g[Gini]
 -f,--file <name>        input file
 -h,--help               print this message
 -o,--output <name>      output file
 -p,--partition          partition train/test data
 -q,--query <type>       query model, enter: t[Tree] or r[Random forest]
 -r,--forest <amount>    create random forest, enter # of trees
 -s,--save               save tree/random forest
 -t,--threads <amount>   maximum number of threads (default is 500)
 -v,--validation         create 10-fold cross-validation
 -ver,--version          version

List of features

  • It uses a new Certainty formula as splitting criteria.
  • Provides causal analysis report, which shows how some attribute values cause a particular classification.
  • Creates full trees, showing error rates for train and test data, attribute importance, causes and false positives/negatives.
  • If no test data is provided, it can split the train dataset in 80% for training and 20% for testing.
  • Creates random forests, showing error rates for train and test data, attribute importance, causes and false positives/negatives. Random forests are created in parallel, so it is very fast.
  • Creates 10 Fold Cross-Validation for trees and random forests, showing error rates, mean and Standard Error and false positives/negatives. Cross-Validation folds are created in parallel.
  • Saves trees and random forests to disk in a compressed file. (E.g. model.tree, model.forest)
  • Query trees and random forest from saved files. Queries can contain missing values, just enter the character: “?”.
  • Make predictions and fill out cases files with those predictions, either from single trees or random forests.
  • Missing values imputation for train and test data is implemented. Continuous attributes are imputed as the mean value. Discrete attributes are imputed as MODE, which selects the value that is most frequent.
  • Ignoring attributes is implemented. In the .names file just set the attribute type as: ignore.
  • Three different splitting criteria can be used: Certainty, Entropy and Gini. If no criteria is invoked then Certainty will be used.

Example run with titanic dataset

[email protected] datasets % java -jar cid3.jar -f titanic

CID3 [Version 1.1]              Saturday October 30, 2021 06:34:11 AM
------------------
[ ✓ ] Read data: 891 cases for training. (10 attributes)
[ ✓ ] Decision tree created.

Rules: 276
Nodes: 514

Importance Cause   Attribute Name
---------- -----   --------------
      0.57   yes ············ Sex
      0.36   yes ········· Pclass
      0.30   yes ··········· Fare
      0.28   yes ······· Embarked
      0.27   yes ·········· SibSp
      0.26   yes ·········· Parch
      0.23    no ············ Age


[==== TRAIN DATA ====] 

Correct guesses:  875
Incorrect guesses: 16 (1.8%)

# Of Cases  False Pos  False Neg   Class
----------  ---------  ---------   -----
       549         14          2 ····· 0
       342          2         14 ····· 1

Time: 0:00:00

Requirements

CID3 requires JDK 15 or higher.

The data format is similar to that of C4.5 and C5.0. The data file format is CSV, and it could be split in two separated files, like: titanic.data and titanic.test. The class attribute column must be the last column of the file. The other necessary file is the "names" file, which should be named like: titanic.names, and it contains the names and types of the attributes. The first line is the class attribute possible values. This line could be left empty with just a dot(.) Below is an example of the titanic.names file:

0,1.  
PassengerId: ignore.  
Pclass: 1,2,3.  
Sex : male,female.  
Age: continuous.  
SibSp: discrete.  
Parch: discrete.  
Ticket: ignore.  
Fare: continuous.  
Cabin: ignore.  
Embarked: discrete.  

Example of causal analysis

% java -jar cid3.jar -f adult -a education

From this example we can see that attribute "education" is a cause, which is based on the certainty-raising inequality. Once we know that it is a cause we then compare the causal certainties of its values. When it's value is "Doctorate" it causes the earnings to be greater than $50,000, with a probability of 0.73. A paper will soon be published with all the formulas used to calculate the Certainty for splitting the nodes and the certainty-raising inequality, used for causal analysis.

Importance Cause   Attribute Name
---------- -----   --------------
      0.56   yes ······ education

Report of causal certainties
----------------------------

[ Attribute: education ]

    1st-4th --> <=50K  (0.97)

    5th-6th --> <=50K  (0.95)

    7th-8th --> <=50K  (0.94)

    9th --> <=50K  (0.95)

    10th --> <=50K  (0.94)

    11th --> <=50K  (0.95)

    12th --> <=50K  (0.93)

    Assoc-acdm --> <=50K  (0.74)

    Assoc-voc --> <=50K  (0.75)

    Bachelors --> Non cause.

    Doctorate --> >50K  (0.73)

    HS-grad --> <=50K  (0.84)

    Masters --> >50K  (0.55)

    Preschool --> <=50K  (0.99)

    Prof-school --> >50K  (0.74)

    Some-college --> <=50K  (0.81)
You might also like...
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Random-Afg - Afghanistan Random Old Idz Cloner Tools
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.
ElegantRL is featured with lightweight, efficient and stable, for researchers and practitioners.

Lightweight, efficient and stable implementations of deep reinforcement learning algorithms using PyTorch. 🔥

This program writes christmas wish programmatically. It is using turtle as a pen pointer draw christmas trees and stars.

Introduction This is a simple program is written in python and turtle library. The objective of this program is to wish merry Christmas programmatical

Simulate genealogical trees and genomic sequence data using population genetic models

msprime msprime is a population genetics simulator based on tskit. Msprime can simulate random ancestral histories for a sample of individuals (consis

TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, Daniel Silva, Andrew McCallum, Amr Ahmed. KDD 2019.

gHHC Code for: Gradient-based Hierarchical Clustering using Continuous Representations of Trees in Hyperbolic Space. Nicholas Monath, Manzil Zaheer, D

A python library to build Model Trees with Linear Models at the leaves.
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Releases(v1.2.4)
Owner
Alejandro Penate-Diaz
Machine learner, web developer, scientist and photo edition enthusiast.
Alejandro Penate-Diaz
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Count GitHub Stars ⭐

Count GitHub Stars per Day ⭐ Track GitHub stars per day over a date range to measure the open-source popularity of different repositories. Requirement

Ultralytics 20 Nov 20, 2022
FeTaQA: Free-form Table Question Answering

FeTaQA: Free-form Table Question Answering FeTaQA is a Free-form Table Question Answering dataset with 10K Wikipedia-based {table, question, free-form

Language, Information, and Learning at Yale 40 Dec 13, 2022
Pytorch implementation AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

AttnGAN Pytorch implementation for reproducing AttnGAN results in the paper AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative

Tao Xu 1.2k Dec 26, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023
Energy consumption estimation utilities for Jetson-based platforms

This repository contains a utility for measuring energy consumption when running various programs in NVIDIA Jetson-based platforms. Currently TX-2, NX, and AGX are supported.

OpenDR 10 Jun 17, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
This is the official source code of "BiCAT: Bi-Chronological Augmentation of Transformer for Sequential Recommendation".

BiCAT This is our TensorFlow implementation for the paper: "BiCAT: Sequential Recommendation with Bidirectional Chronological Augmentation of Transfor

John 15 Dec 06, 2022
Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch

Semantic Segmentation Easy to use and customizable SOTA Semantic Segmentation models with abundant datasets in PyTorch Features Applicable to followin

sithu3 530 Jan 05, 2023
(ImageNet pretrained models) The official pytorch implemention of the TPAMI paper "Res2Net: A New Multi-scale Backbone Architecture"

Res2Net The official pytorch implemention of the paper "Res2Net: A New Multi-scale Backbone Architecture" Our paper is accepted by IEEE Transactions o

Res2Net Applications 928 Dec 29, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Multi-task yolov5 with detection and segmentation based on yolov5

YOLOv5DS Multi-task yolov5 with detection and segmentation based on yolov5(branch v6.0) decoupled head anchor free segmentation head README中文 Ablation

150 Dec 30, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022