A python package to perform same transformation to coco-annotation as performed on the image.

Overview

coco-transform-util

A python package to perform same transformation to coco-annotation as performed on the image.

Installation

Way 1

$ git clone https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
$ cd coco-transform-util
$ python3 setup.py install

Way 2

$ pip3 install git+https://git.cglcloud.com/ILC-APAC/coco-transform-util.git
<<< Username: <[email protected]>
<<< Password: <personal access token or SSH key>

Personal Access token looks like this 83b318cg875a5g302e5fdaag74afc8ceb6a91a2e.

Reference: How to generate Personal Access token

Check installation

import ctu
print(ctu.__version__)

Benefits and Use Cases

  1. Faster Model Training: Decrease the size of images and accordingly its annotation will be changed using this.
  2. Flexibility: Rescaling of images and annotations to meet the need of Model/Framework.
  3. Cost Saving: Lesser Computation requirement as images can be downscaled.
  4. Interpretability: Annotation Visualization is also a part of this package.
  5. Data Augmentation: <more practical in future>
  6. Ability to handle other cases: Added Functionality such as cropping or padding of the annotation can help in multiple other cases such as:
    • cropping out each object image & annotation from an original image
    • cropping unnecessary area to zoom in on some particular area.
    • converting images to 1:1 aspect ratio by using padding and/or cropping.

How to use it?

Core

There are four core modules inside that helps in performing operations on COCO Annotation. These can imported as shown below:

from ctu import WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize, AggreagateCoco  

It's recommended that you have look at samples/example_core_modules.py to understand and explore how to use these.

Wrapper

Making use of wrappers can also come in handly to perform multiple operations in a much simpler and interpretable manner using the functions provided below:

from ctu import (
    sample_modif_step_di, get_modif_imag, get_modif_coco_annotation, 
    accept_and_process_modif_di, ImgTransform, Visualize
)

It's recommended that you have look at samples/example_highlevel_function.py to understand and explore how to use these.

Some sample data has also been provided with this package at example_data/* to explore these functionalities.

Demo / Sample

A sample HTML created from Jupyter-Notebook, contating some sample results has been added to the path samples/Demo-SampleOutput.html.

Version History

  • v0.1: Core Modules: WholeCoco2SingleImgCoco, Coco2CocoRel, CocoRel2CocoSpecificSize. External Dependency on AMLEET package.
  • v0.2: Removed the dependency on AMLEET package. Develop Core Module: AggreagateCoco. Addition of field "area" under "annotations" in coco.
  • v0.3: Completed: Remove the out of frame coordinates in annotation. Update & add fields in "annotation" > "images". Ability to create transparent and general mask create_mask. In Development: Ability to export transformed image, mask and annotation per image wise and as a whole too.

Future

  • Update the image fields in "images" key. (done)
  • Crop out the annotation which are out-of-frame based on recent image shape. (done)
  • Annotation Visualization + Mask creation can become a core feature to this library. (done)
  • Rotate 90 degree left/right.
  • Flip horizontally or vertically.
  • COCO to other annotation format can also be a feature to this package.
lightweight python wrapper for vowpal wabbit

vowpal_porpoise Lightweight python wrapper for vowpal_wabbit. Why: Scalable, blazingly fast machine learning. Install Install vowpal_wabbit. Clone and

Joseph Reisinger 163 Nov 24, 2022
CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes

CHERRY is a python library for predicting the interactions between viral and prokaryotic genomes. CHERRY is based on a deep learning model, which consists of a graph convolutional encoder and a link

Kenneth Shang 12 Dec 15, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Photo2cartoon - 人像卡通化探索项目 (photo-to-cartoon translation project)

人像卡通化 (Photo to Cartoon) 中文版 | English Version 该项目为小视科技卡通肖像探索项目。您可使用微信扫描下方二维码或搜索“AI卡通秀”小程序体验卡通化效果。

Minivision_AI 3.5k Dec 30, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023