Benchmark for the generalization of 3D machine learning models across different remeshing/samplings of a surface.

Overview

Discretization Robust Correspondence Benchmark

One challenge of machine learning on 3D surfaces is that there are many different representations/samplings ("discretizations") which all encode the same underlying shape---consider e.g. different triangle meshes of a surface. We expect models to generalize across these representations; the purpose of this benchmark is to measure generalization of 3D machine learning models across different discretizations

This benchmark contains test meshes of human bodies, derived from the MPI-FAUST dataset, remeshed/resampled according to several policies. The task is to predict correspondence, defined by predicting the nearest vertex index on the template mesh. We intentionally provide test data only. The intent of this benchmark is that methods train on the ordinary FAUST template meshes, then evaluate on this dataset. This measures the ability of the method to generalize to new, unseen discretizations of shapes.

example image of data

From: DiffusionNet: Discretization Agnostic Learning on Surfaces, Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov, conditionally accepted to ACM ToG 2021.

Please cite this benchmark as:

@article{sharp2021diffusion,
  author = {Sharp, Nicholas and Attaiki, Souhaib and Crane, Keenan and Ovsjanikov, Maks},
  title = {DiffusionNet: Discretization Agnostic Learning on Surfaces},
  journal = {ACM Trans. Graph.},
  volume = {XX},
  number = {X},
  year = {20XX},
  publisher = {ACM},
  address = {New York, NY, USA},
}

Remeshing/sampling policies

  • iso Meshes are isotropically remeshed, to have a roughly uniform distribution of vetices, with approximately equilateral triangles
  • qes Meshes are first refined to have many more vertices, then simplified back to approximately 2x the original resolution using Quadric Error Simplification
  • mc Meshes are volumetrically reconstructed, and a mesh is extracted via the marching cubes algorithm.
  • dense Meshes are refined to have nonuniform density by choosing 5 random faces, refining the mesh in the vicinity of the face, then isotropically remeshing.
  • cloud A point cloud, with normals, sampled uniformly from the mesh

In this repository

  • data/
    • iso/
      • tr_reg_iso_080.ply FAUST test mesh 80, remeshed according to the iso strategy
      • tr_reg_iso_080.txt Ground-truth correspondence indices, per-vertex
      • ...
      • tr_reg_iso_099.ply
      • tr_reg_iso_099.txt
    • qes/
      • tr_reg_qes_080.ply
      • tr_reg_qes_080.txt
      • ...
    • mc/
      • tr_reg_mc_080.ply
      • tr_reg_mc_080.txt
      • ...
    • dense/
      • tr_reg_dense_080.ply
      • tr_reg_dense_080.txt
      • ...
    • cloud/
      • tr_reg_cloud_080.ply A sampled point cloud from FAUST test mesh 80, with normals
      • tr_reg_cloud_080.txt Ground-truth correspondence indices, per-point
      • ...
  • scripts/ Meshlab & Python scripts which were used to generate the data.

Notes about the data

  • The meshes are not necessarily high quality! In particular, the mc meshes have coincident vertices and degenerate leftover from the marching cubes process. Such artifacts are a common occurence in real data.

Benchmark Task

This benchmark is designed for template correspondence via vertex index prediction. That is, for each vertex (resp., point) in a test shape, we predict the corresponding nearest vertex on a template mesh. The FAUST template mesh has 6890 vertices, so this is essentially a segmentation problem with classes from [0, 6899]. Note that although popular in past work, this categorical formulation is surely not the best notion of correspondence between surfaces. However, it is very simple, and exposes a tendancy to overfit to discretization, which makes it a good choice for this benchmark.

The first 80 original MPI-FAUST template meshes should be used as training data: i.e. tr_reg_000.ply-tr_reg_079.ply. The last 20 shapes are taken as the test set, and remeshed/resampled for the purpose of this benchmark. These original meshes are already deformed templates, so the ground truth vertex labels are simply [0,1,2,3,4...]. We do not host the original data here; you must download it from http://faust.is.tue.mpg.de/.

After training on the first 80 original FAUST meshes, we evaluate on the test meshes, predicting corresponding vertices. Error is measured by the geodesic distance along the template mesh between the predicted vertex and the ground-truth vertex. (% of vertices predicted exactly correct is not really a meaningful metric.) See this repo for a full example of training and eval scripts.

Papers using this dataset

(create a pull request to add more!)

License

The scripts which generate the data are available for any use under an MIT license (C) Nicholas Sharp 2021.

The remeshed/sampled meshes are derived from the MPI-FAUST dataset, governed by this license (which allows derivative works).

Owner
Nicholas Sharp
3D geometry researcher: computer graphics/vision, geometry processing, and 3D machine learning
Nicholas Sharp
A bare-bones Python library for quality diversity optimization.

pyribs Website Source PyPI Conda CI/CD Docs Docs Status Twitter pyribs.org GitHub docs.pyribs.org A bare-bones Python library for quality diversity op

ICAROS 127 Jan 06, 2023
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Text to image synthesis using thought vectors

Text To Image Synthesis Using Thought Vectors This is an experimental tensorflow implementation of synthesizing images from captions using Skip Though

Paarth Neekhara 2.1k Jan 05, 2023
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
LIAO Shuiying 6 Dec 01, 2022
Allows including an action inside another action (by preprocessing the Yaml file). This is how composite actions should have worked.

actions-includes Allows including an action inside another action (by preprocessing the Yaml file). Instead of using uses or run in your action step,

Tim Ansell 70 Nov 04, 2022
BlockUnexpectedPackets - Preventing BungeeCord CPU overload due to Layer 7 DDoS attacks by scanning BungeeCord's logs

BlockUnexpectedPackets This script automatically blocks DDoS attacks that are sp

SparklyPower 3 Mar 31, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022