Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Overview

Real-Time Seizure Detection using Electroencephalogram (EEG)

This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting".

  • If you have used our code or referred to our result in your research, please cite:
@article{leerealtime2022,
  author = {Lee, Kwanhyung and Jeong, Hyewon and Kim, Seyun and Yang, Donghwa and Kang, Hoon-Chul and Choi, Edward},
  title = {Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting},
  booktitle = {Preprint},
  year = {2022}
}

Concept Figure

We downsample the EEG signal and extract features. The models detect whether ictal / non-ictal signal appears within the 4-second sliding window input. We present an example case with Raw EEG signal but other signal feature extractors can also be applied in the pipeline. concpet

Requirements

To install all the requirements of this repository in your environment, run:

pip install -r requirements.txt

Preprocessing

To construct dataset with TUH EEG dataset, you can download __ and run:

python preproces.py --data_type train --cpu_num *available cpu numbers* --label_type  *tse or tse_bi* --save_directory *path to save preprocessed files* --samplerate *sample rate that you want to re-sample all files*

Model Training

Check our builder/models/detection_models or builder/models/multiclassification repository to see available models for each task. To train the model in default setting, run a command in a format as shown below :

CUDA_VISIBLE_DEVICES=*device number* python ./2_train.py --project-name *folder name to store trained model* --model *name of model to run* --task-type *task*

For sincnet settin, add --sincnet-bandnum 7

Example run for binary seizure detection:

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True
CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name cnn2d_lstm_raw --model cnn2d_lstm_v8 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model raw --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Example run for SincNet signal feature extraction :

CUDA_VISIBLE_DEVICES=7 python3 ./2_train.py --project-name alexnet_v4_raw_sincnet --model alexnet_v4 --task-type binary --optim adam --window-size 4 --window-shift 1 --eeg-type bipolar --enc-model sincnet --sincnet-bandnum 7 --binary-sampler-type 6types --binary-target-groups 2 --epoch 8 --batch-size 32 --seizure-wise-eval-for-binary True

Other arguments you can add :

  1. enc-model : preprocessing method to extract features from raw EEG data (options: raw, sincnet, LFCC, stft2, psd2, downsampled) psd2 is for Frequency bands described in our paper stft2 is for short-time fourier transform
  2. seizure-wise-eval-for-binary : perform seizure-wise evaluation for binary task at the end of training if True
  3. ignore-model-summary : does not print model summary and size information if True model summary is measured with torchinfo Please refer to /control/config.py for other arguments and brief explanations.

Model Evaluation

We provide multiple evaluation methods to measure model performance in different perspectives. This command will measure the model's inference time in seconds for one window.

python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*
python ./4_seiz_test.py --project-name *folder where model is stored* --model *name of model to test* --task-type *task*

Test and measure model speed

To evaluate the model and measure model speed per window using cpu, run the following command :

CUDA_VISIBLE_DEVICES="" python ./3_test.py --project-name *folder where model is stored* --model *name of model to test* --cpu 1 --batch-size 1

For sincnet setting, add --sincnet-bandnum 7 4_seiz_test.py is for evaluation metrics of OVLP, TAES, average latency, and MARGIN

Other arguments you can add :

  1. ignore-model-speed : does not calculate model's inference time per sliding window if True
Owner
AITRICS
AITRICS
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
[ACMMM 2021, Oral] Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception"

EIP: Elastic Interaction of Particles Code release for "Elastic Tactile Simulation Towards Tactile-Visual Perception", in ACMMM (Oral) 2021. By Yikai

Yikai Wang 37 Dec 20, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
Data from "HateCheck: Functional Tests for Hate Speech Detection Models" (Röttger et al., ACL 2021)

In this repo, you can find the data from our ACL 2021 paper "HateCheck: Functional Tests for Hate Speech Detection Models". "test_suite_cases.csv" con

Paul Röttger 43 Nov 11, 2022