Feature extraction made simple with torchextractor

Overview

torchextractor: PyTorch Intermediate Feature Extraction

PyPI - Python Version PyPI Read the Docs Upload Python Package GitHub

Introduction

Too many times some model definitions get remorselessly copy-pasted just because the forward function does not return what the person expects. You provide module names and torchextractor takes care of the extraction for you.It's never been easier to extract feature, add an extra loss or plug another head to a network. Ler us know what amazing things you build with torchextractor!

Installation

pip install torchextractor  # stable
pip install git+https://github.com/antoinebrl/torchextractor.git  # latest

Requirements:

  • Python >= 3.6+
  • torch >= 1.4.0

Usage

import torch
import torchvision
import torchextractor as tx

model = torchvision.models.resnet18(pretrained=True)
model = tx.Extractor(model, ["layer1", "layer2", "layer3", "layer4"])
dummy_input = torch.rand(7, 3, 224, 224)
model_output, features = model(dummy_input)
feature_shapes = {name: f.shape for name, f in features.items()}
print(feature_shapes)

# {
#   'layer1': torch.Size([1, 64, 56, 56]),
#   'layer2': torch.Size([1, 128, 28, 28]),
#   'layer3': torch.Size([1, 256, 14, 14]),
#   'layer4': torch.Size([1, 512, 7, 7]),
# }

See more examples Binder Open In Colab

Read the documentation

FAQ

• How do I know the names of the modules?

You can print all module names like this:

tx.list_module_names(model)

# OR

for name, module in model.named_modules():
    print(name)

• Why do some operations not get listed?

It is not possible to add hooks if operations are not defined as modules. Therefore, F.relu cannot be captured but nn.Relu() can.

• How can I avoid listing all relevant modules?

You can specify a custom filtering function to hook the relevant modules:

# Hook everything !
module_filter_fn = lambda module, name: True

# Capture of all modules inside first layer
module_filter_fn = lambda module, name: name.startswith("layer1")

# Focus on all convolutions
module_filter_fn = lambda module, name: isinstance(module, torch.nn.Conv2d)

model = tx.Extractor(model, module_filter_fn=module_filter_fn)

• Is it compatible with ONNX?

tx.Extractor is compatible with ONNX! This means you can also access intermediate features maps after the export.

Pro-tip: name the output nodes by using output_names when calling torch.onnx.export.

• Is it compatible with TorchScript?

Not yet, but we are working on it. Compiling registered hook of a module was just recently added in PyTorch v1.8.0.

• "One more thing!" 😉

By default we capture the latest output of the relevant modules, but you can specify your own custom operations.

For example, to accumulate features over 10 forward passes you can do the following:

import torch
import torchvision
import torchextractor as tx

model = torchvision.models.resnet18(pretrained=True)

def capture_fn(module, input, output, module_name, feature_maps):
    if module_name not in feature_maps:
        feature_maps[module_name] = []
    feature_maps[module_name].append(output)

extractor = tx.Extractor(model, ["layer3", "layer4"], capture_fn=capture_fn)

for i in range(20):
    for i in range(10):
        x = torch.rand(7, 3, 224, 224)
        model(x)
    feature_maps = extractor.collect()

    # Do your stuffs here

    # Discard collected elements
    extractor.clear_placeholder()

Contributing

All feedbacks and contributions are welcomed. Feel free to report an issue or to create a pull request!

If you want to get hands-on:

  1. (Fork and) clone the repo.
  2. Create a virtual environment: virtualenv -p python3 .venv && source .venv/bin/activate
  3. Install dependencies: pip install -r requirements.txt && pip install -r requirements-dev.txt
  4. Hook auto-formatting tools: pre-commit install
  5. Hack as much as you want!
  6. Run tests: python -m unittest discover -vs ./tests/
  7. Share your work and create a pull request.

To Build documentation:

cd docs
pip install requirements.txt
make html
You might also like...
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

This repository contains the code for our fast polygonal building extraction from overhead images pipeline.
This repository contains the code for our fast polygonal building extraction from overhead images pipeline.

Polygonal Building Segmentation by Frame Field Learning We add a frame field output to an image segmentation neural network to improve segmentation qu

Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams
Adversarial Robustness Toolbox (ART) - Python Library for Machine Learning Security - Evasion, Poisoning, Extraction, Inference - Red and Blue Teams

Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to defend and evaluate Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, scikit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, speech recognition, generation, certification, etc.).

Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks
An Efficient Implementation of Analytic Mesh Algorithm for 3D Iso-surface Extraction from Neural Networks

AnalyticMesh Analytic Marching is an exact meshing solution from neural networks. Compared to standard methods, it completely avoids geometric and top

[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

Comments
  • Only extracting part of the intermediate feature with DataParallel

    Only extracting part of the intermediate feature with DataParallel

    Hi @antoinebrl,

    I am using torch.nn.DataParallel on a 2-GPU machine with a batch size of N. Data parallel training will split the input data batch into 2 pieces sequentially and sends them to GPUs.

    When using torchextractor to obtain the intermediate feature, the input data size and the output size are both N as expected, but the feature size becomes N/2. Does this mean we only extract the features of one GPU? I'm not sure because I didn't find an exact match.

    Can you please explain why this happens? Maybe the normal behavior is returning features from all GPUs or from a specified one?

    A minimal example to reproduce:

    import torch
    import torchvision
    import torchextractor as tx
    
    model = torchvision.models.resnet18(pretrained=True)
    model_gpu = torch.nn.DataParallel(torchvision.models.resnet18(pretrained=True))
    model_gpu.cuda()
    
    model = tx.Extractor(model, ["layer1"])
    model_gpu = tx.Extractor(model_gpu, ["module.layer1"])
    dummy_input = torch.rand(8, 3, 224, 224)
    _, features = model(dummy_input)
    _, features_gpu = model_gpu(dummy_input)
    feature_shapes = {name: f.shape for name, f in features.items()}
    print(feature_shapes)
    feature_shapes_gpu = {name: f.shape for name, f in features_gpu.items()}
    print(feature_shapes_gpu)
    
    # {'layer1': torch.Size([8, 64, 56, 56])}
    # {'module.layer1': torch.Size([4, 64, 56, 56])}
    
    opened by wydwww 5
Releases(v0.3.0)
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21

Deep Virtual Markers This repository contains the accompanying code for Deep Virtual Markers for Articulated 3D Shapes, ICCV'21 Getting Started Get sa

KimHyomin 45 Oct 07, 2022
Material for my PyConDE & PyData Berlin 2022 Talk "5 Steps to Speed Up Your Data-Analysis on a Single Core"

5 Steps to Speed Up Your Data-Analysis on a Single Core Material for my talk at the PyConDE & PyData Berlin 2022 Description Your data analysis pipeli

Jonathan Striebel 9 Dec 12, 2022
Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Reconstructing 3D Human Pose by Watching Humans in the Mirror Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou CVPR 2021 Oral The videos a

ZJU3DV 178 Dec 13, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Toward Realistic Single-View 3D Object Reconstruction with Unsupervised Learning from Multiple Images (ICCV 2021)

Table of Content Introduction Getting Started Datasets Installation Experiments Training & Testing Pretrained models Texture fine-tuning Demo Toward R

VinAI Research 42 Dec 05, 2022
Official code for the CVPR 2022 (oral) paper "Extracting Triangular 3D Models, Materials, and Lighting From Images".

nvdiffrec Joint optimization of topology, materials and lighting from multi-view image observations as described in the paper Extracting Triangular 3D

NVIDIA Research Projects 1.4k Jan 01, 2023
Recurrent Conditional Query Learning

Recurrent Conditional Query Learning (RCQL) This repository contains the Pytorch implementation of One Model Packs Thousands of Items with Recurrent C

Dongda 4 Nov 28, 2022
LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs

LERP : Label-dependent and event-guided interpretable disease risk prediction using EHRs This is the code for the LERP. Dataset The dataset used is MI

5 Jun 18, 2022