Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Overview

Segmentation from Natural Language Expressions

This repository contains the code for the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in ECCV, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Google TensorFlow (v1.0.0 or higher) following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Demo

  1. Download the trained models:
    exp-referit/tfmodel/download_trained_models.sh.
  2. Run the language-based segmentation model demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Image

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

  1. Download ReferIt dataset:
    exp-referit/referit-dataset/download_referit_dataset.sh.
  2. Download VGG-16 network parameters trained on ImageNET 1000 classes:
    models/convert_caffemodel/params/download_vgg_params.sh.

Training

  1. You may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Build training batches for bounding boxes:
    python exp-referit/build_training_batches_det.py.
  3. Build training batches for segmentation:
    python exp-referit/build_training_batches_seg.py.
  4. Select the GPU you want to use during training:
    export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine.
  5. Train the language-based bounding box localization model:
    python exp-referit/exp_train_referit_det.py $GPU_ID.
  6. Train the low resolution language-based segmentation model (from the previous bounding box localization model):
    python exp-referit/init_referit_seg_lowres_from_det.py && python exp-referit/exp_train_referit_seg_lowres.py $GPU_ID.
  7. Train the high resolution language-based segmentation model (from the previous low resolution segmentation model):
    python exp-referit/init_referit_seg_highres_from_lowres.py && python exp-referit/exp_train_referit_seg_highres.py $GPU_ID.

Alternatively, you may skip the training procedure and download the trained models directly:
exp-referit/tfmodel/download_trained_models.sh.

Evaluation

  1. Select the GPU you want to use during testing: export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine. Also, you may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Run evaluation for the high resolution language-based segmentation model:
    python exp-referit/exp_test_referit_seg.py $GPU_ID
    This should reproduce the results in the paper.
  3. You may also evaluate the language-based bounding box localization model:
    python exp-referit/exp_test_referit_det.py $GPU_ID
    The results can be compared to this paper.
Owner
Ronghang Hu
Research Scientist, Facebook AI Research (FAIR)
Ronghang Hu
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Polynomial-time Meta-Interpretive Learning

Louise - polynomial-time Program Learning Getting help with Louise Louise's author can be reached by email at Stassa Patsantzis 64 Dec 26, 2022

improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
[3DV 2020] PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction

PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction International Conference on 3D Vision, 2020 Sai Sagar Jinka1, Rohan

Rohan Chacko 39 Oct 12, 2022
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
Underwater image enhancement

LANet Our work proposes an adaptive learning attention network (LANet) to solve the problem of color casts and low illumination in underwater images.

LiuShiBen 7 Sep 14, 2022
某学校选课系统GIF验证码数据集 + Baseline模型 + 上下游相关工具

elective-dataset-2021spring 某学校2021春季选课系统GIF验证码数据集(29338张) + 准确率98.4%的Baseline模型 + 上下游相关工具。 数据集采用 知识共享署名-非商业性使用 4.0 国际许可协议 进行许可。 Baseline模型和上下游相关工具采用

xmcp 27 Sep 17, 2021
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
PyTorch implementation of DreamerV2 model-based RL algorithm

PyDreamer Reimplementation of DreamerV2 model-based RL algorithm in PyTorch. The official DreamerV2 implementation can be found here. Features ... Run

118 Dec 15, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022