Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Overview

Segmentation from Natural Language Expressions

This repository contains the code for the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in ECCV, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Google TensorFlow (v1.0.0 or higher) following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Demo

  1. Download the trained models:
    exp-referit/tfmodel/download_trained_models.sh.
  2. Run the language-based segmentation model demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Image

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

  1. Download ReferIt dataset:
    exp-referit/referit-dataset/download_referit_dataset.sh.
  2. Download VGG-16 network parameters trained on ImageNET 1000 classes:
    models/convert_caffemodel/params/download_vgg_params.sh.

Training

  1. You may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Build training batches for bounding boxes:
    python exp-referit/build_training_batches_det.py.
  3. Build training batches for segmentation:
    python exp-referit/build_training_batches_seg.py.
  4. Select the GPU you want to use during training:
    export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine.
  5. Train the language-based bounding box localization model:
    python exp-referit/exp_train_referit_det.py $GPU_ID.
  6. Train the low resolution language-based segmentation model (from the previous bounding box localization model):
    python exp-referit/init_referit_seg_lowres_from_det.py && python exp-referit/exp_train_referit_seg_lowres.py $GPU_ID.
  7. Train the high resolution language-based segmentation model (from the previous low resolution segmentation model):
    python exp-referit/init_referit_seg_highres_from_lowres.py && python exp-referit/exp_train_referit_seg_highres.py $GPU_ID.

Alternatively, you may skip the training procedure and download the trained models directly:
exp-referit/tfmodel/download_trained_models.sh.

Evaluation

  1. Select the GPU you want to use during testing: export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine. Also, you may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Run evaluation for the high resolution language-based segmentation model:
    python exp-referit/exp_test_referit_seg.py $GPU_ID
    This should reproduce the results in the paper.
  3. You may also evaluate the language-based bounding box localization model:
    python exp-referit/exp_test_referit_det.py $GPU_ID
    The results can be compared to this paper.
Owner
Ronghang Hu
Research Scientist, Facebook AI Research (FAIR)
Ronghang Hu
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression.

Code to run experiments in SLOE: A Faster Method for Statistical Inference in High-Dimensional Logistic Regression. Not an official Google product. Me

Google Research 27 Dec 12, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
PyTorch implementation of "A Two-Stage End-to-End System for Speech-in-Noise Hearing Aid Processing"

Implementation of the Sheffield entry for the first Clarity enhancement challenge (CEC1) This repository contains the PyTorch implementation of "A Two

10 Aug 19, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Single Image Random Dot Stereogram for Tensorflow

TensorFlow-SIRDS Single Image Random Dot Stereogram for Tensorflow SIRDS is a means to present 3D data in a 2D image. It allows for scientific data di

Greg Peatfield 5 Aug 10, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Optimizing Deeper Transformers on Small Datasets

DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap

16 Nov 14, 2022
Implementation of RegretNet with Pytorch

Dependencies are Python 3, a recent PyTorch, numpy/scipy, tqdm, future and tensorboard. Plotting with Matplotlib. Implementation of the neural network

Horris zhGu 1 Nov 05, 2021
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

João Fonseca 3 Jan 03, 2023
[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Single Image Depth Prediction with Wavelet Decomposition Michaël Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambeto

Niantic Labs 205 Jan 02, 2023
TRIQ implementation

TRIQ Implementation TF-Keras implementation of TRIQ as described in Transformer for Image Quality Assessment. Installation Clone this repository. Inst

Junyong You 115 Dec 30, 2022
Learning from Synthetic Shadows for Shadow Detection and Removal [Inoue+, IEEE TCSVT 2020].

Learning from Synthetic Shadows for Shadow Detection and Removal (IEEE TCSVT 2020) Overview This repo is for the paper "Learning from Synthetic Shadow

Naoto Inoue 67 Dec 28, 2022